تحلیل مبتنی بر نگاشت ساختار فکری دانش زلزله‌شناسی در دو حوزه مواد و انرژی طی سال‌های 2010 تا 2020

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد زلزله شناسی، مرکز تحقیقات زمین‏ لرزه شناسی .

2 استادیار گروه علم اطلاعات و دانش‌شناسی، دانشکده علوم تربیتی، دانشگاه فردوسی مشهد، ایران .

3 استادیار مرکز تحقیقات زمین ‏لرزه شناسی، دانشگاه فردوسی مشهد، ایران.

چکیده

هدف: هدف از این پژوهش بررسی دانش زلزله‌شناسی در دو حوزه مواد و انرژی طی سال‌های 2010 تا 2020 با استفاده از تکنیک‌ ترسیم ساختار فکری است. دلیل تمرکز بر این دو حوزه، سرمایه‌گذاری نسبتاً مناسب سازمان‌ها و نهادهای بین‌المللی بر آنهاست.
روش‌شناسی: به‌منظور دستیابی به هدف تعریف‌شده، از تکنیک ترسیم شبکه دانشی با استفاده از هم‏رخدادی واژگان استفاده شده است. به این منظور علاوه بر ترسیم شبکه ارتباطات بین موضوعی در دو حوزه یادشده، نمودار راهبردی و همچنین نمودار تکامل موضوعی خوشه‌های افراز‌شده در هر حوزه نیز ترسیم شده است. برای انجام این کار از بسته بیبلیومتریکس نرم‌افزار R استفاده شده است.
یافته‌ها: یافته‌ها حاکی از آن است که در حوزه موضوعی مواد مقالات منتشرشده در 4 خوشه و در حوزه انرژی مقالات منتشرشده در 6 خوشه جای گرفته‌اند. هریک از 4 خوشه شناسایی‌شده در حوزه مواد در یکی از نواحی موضوعات پیش‌ران، موضوعات بنیادی و چندوجهی، موضوعات توسعه‌یافته اما منفرد و یا موضوعات رو به رشد/افول قرار گرفته‌اند. حال آنکه از 6 خوشه شناسایی‌شده در حوزه انرژی 3 خوشه در ناحیه پیش‌ران و 3 خوشه در ناحیه رو به رشد/افول قرار گرفته‌اند.
نتیجه‌گیری: مطالعه حاضر نشان می‌دهد که در حوزه انرژی تنوع جایگاه خوشه‌ها در نمودار راهبردی کمتر از حوزه مواد بوده و همین روند در میان یافته‌های مرتبط با مقالات پراستناد نیز به چشم می‌خورد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Knowledge Structure of Seismology in Materials and Energy Fields From 2010 to 2020: A Science Mapping Study

نویسندگان [English]

  • Farahnaz Abouk 1
  • Sholeh Arastoopoor 2
  • Reza Khajavi 3
1 MS.Ferdowsi University of Mashhad.
2 Assistant Professor, Ferdowsi University of Mashhad.
3 Assistant Professor, Ferdowsi University of Mashhad .
چکیده [English]

Purpose: The main objective of this paper is to analyze the intellectual framework of seismology in two distinct domains: materials and energy, from 2010 to 2020, using a science mapping technique. These two fields were selected based on their investment rate by international institutions compared to other areas of seismology. Moreover, this study also focused on the evolution of different clusters and subclusters that were formed or transformed into other clusters during the time span of the study.
 
Methodology: To this end, scientometrics approach and science mapping technique used for creating an intellectual structure of seismology through a co-word analysis. Both strategic and theme evolution diagrams were prepared using R's Bibliometrix package. Strategic diagrams pinpointed the place of different clusters in four areas of Motor themes, Highly developed and isolated themes, Emerging or declining themes, and Basic and transversal themes. Sankey diagrams were also utilized in order to depict the evolution of different clusters through time. The time frames of these graphs were determined automatically by the R Bibliometrix package.
 
Findings: the results showed that the number of papers in materials' field is higher than energy field and this number is ascending in both fields. 4 clusters were identified in the field of materials and each of them is placed in one of the 4 tiers of the strategic diagram. “Earthquakes” is placed in Motor themes, while “reinforced concretes” cluster is placed somewhere between motor themes and Basic and transversal themes. The "energy dissipation" cluster is classified under Highly advanced and isolated themes, while "walls (structural partitions)" falls under Emerging or declining themes. As for the energy field, six clusters were identified, but they were divided between two different quadrants of the strategic diagram. The clusters "earthquakes," "earthquake event," and "Nuclear power plant" were placed in the Motor themes quadrant, while "Wenchuan earthquake," "forecasting," and "stochastic systems" were fitted in the Emerging or declining themes quadrant. Another interesting finding of this study based on the Sankey diagrams is that during 2010 to 2020 in the field of materials at least 20 different clusters were formed and reformed or dissolved into other clusters which means that this field is somehow active and during 2014 to 2017 has experienced lots of changes and reforms among its sub-clusters. As for the energy field, 21 clusters were identified, each of which experienced some sort of transformation or even devastation. During 2017 and 2018, this field experienced its most active era. If we compare the results of both fields, we can infer that the materials field has undergone more branching than the energy field. In 2010, four clusters were identified in the materials field, whereas in 2020, the number of identified clusters increased to seven. However, in the energy field in 2010, 7 clusters were identified. However, by 2020, the number of clusters had declined to 5. The third part of this study's findings focuses on the highly cited papers in these two fields. The results show that the top ten most cited papers in the materials field are divided into eight different clusters. Among them concretes and earthquake resistance are placed among Motor themes and earthquake engineering and reinforcement clusters are fitted in Basic and transversal themes. While columns(structural) and separation clusters are placed in Emerging or declining themes. As for the energy field, these top 10 cited papers are divided into six clusters. Nuclear energy cluster is considered to be a Motor theme but risk assessment and seismology is placed in Highly developed and isolated themes. However, hydrolic fracturing and deformation clusters are fitted in Basic and transversal themes and earthquakes cluster is among Emerging or declining themes.
Conclusion: based on the results of this study, it is evident that thematic diversity in materials field is more than energy field. This trend is also observed among scientific products with higher citation rates. As for the evolution of clusters in both fields, the results indicate that the materials field has undergone more branching than the energy field.

کلیدواژه‌ها [English]

  • materials in seismology
  • energy in seismology
  • science mapping
  • theme evolution
 
ابوک، ف. (1399). مصورسازی ساختار دانش زلزله‏شناسی [پایان‌نامه کارشناسی ارشد منتشر نشده]. دانشگاه فردوسی مشهد.
اسدی، م.، و قادری، س. (1394). سی و نه سال تولید علم در حوزه ژئوفیزیک، مجله فیزیک زمین فضا، دوره 41 (1). https://doi.org/‌10.22059/jesphys.2015.53441
اصنافی، ا.، و پاکدامن نائینی، م. (1393). بررسی میزان همکاری‌های علمی پژوهشگران علوم زلزله‌شناسی و مهندسی زلزله در مجموعه همایش‌های بین‌المللی‌ زلزله‌شناسی مهندسی زلزله (SEE) طی سال‌های 1991-2011، فصلنامه آموزش مهندسی ایران، 16 (4)، 135-150. https://doi.org/10.22047/ijee.2015.7964
بیگدلو، ا. (1401). ساختار فکری دانش در حوزه بازیابی اطلاعات: مطالعه هم‌واژگانی. پژوهش‌نامه علم‌سنجی (مقاله آماده انتشار). https://doi.org/10.22070/rsci.2022.14569.1501
حسن‌زاده، م.، زندیان، ف.، و احمدی، س. (1397). نگاشت ساختار و چیدمان تاریخی مفاهیم علم اطلاعات و دانش‌‌‌‌شناسی: با رویکرد متن‌کاوی (2004-2013). پژوهشنامه علم‌سنجی، 4 (2)، 123‌–‌142. https://journals.shahed.ac.ir/article_616.html
زندی‏روان، ن.، داورپناه، م.، و فتاحی، ر. (1396). نقشه تولید علم ایران بر اساس مقاله‏های نمایه‌شده در SCI-E. پژوهشنامه کتابداری و اطلاع‏رسانی، 7 (1)، 5 – 26. https://doi.org/10.22067/riis.v7i1.39601
زوارقی، ر.، و حمدی‌پور، ا. (۱۴۰۲). شناسایی قابلیت‌ها و شایستگی‌های علمی دانشگاه تبریز بر مبنای ظرفیت‌های اجتماعی، شناختی و فکری آن .‌پژوهش‌نامه علم‌سنجی، ۹(۱)، (پیاپی ۱۷)، (بهار و تابستان)، ۴۳-۷۴. https://doi.org/10.22070/rsci.2020.5594.1405
فلاح، م.، قربی، ع.، نوروزی، ع.، و جعفری، ا. (1397). مطالعه علم‌سنجی انتشارات علمی حوزه زلزله‌شناسی بر اساس پایگاه استنادی وبگاه علوم. رهیافت، 28 (72)، 63-78. https://www.sid.ir/paper/87820/fa
نجار لشگری، س.، زارعی، ه.، خلخالی، ع.، و پالی، س. (140۲). ترسیم نقشه ساختاری دانش مدیریت آموزشی در ایران. تحلیل هم‌رخدادی واژگان. پژوهش‌نامه علم‌سنجی، ۹(۱)، (پیاپی ۱۷)، (بهار و تابستان۳۸۷-۴۰۸. https://doi.org/10.22070/rsci.2021.14863.1517
یوسفی خرایم، م.، قاسمی، ح.، درویشی سه‌تلانی، ف.، کشاورز ترک، ع.، و موسی‌خانی، م. (1398). خوشه‌بندی و نگاشت روند 40 ساله پژوهش‌های حوزه آینده‌نگاری. آیندهپژوهی مدیریت، ج 30 (4)، 41-54. https://jmfr.srbiau.ac.ir/article_16488.html
 
Abouk, F. (2020). Mapping the Knowledge Structure of Seismology [Unpublished masters Dissertation]. Mashhad: Ferdowsi University of Mashhad. [In Persian].
Adeniyi, O., Perera, S., & Collins, A. (2016). Review of finance and investment in disaster resilience in the built environment. International Journal of Strategic Property Management, 20(3), 224-238. https://doi.org/10.3846/1648715X.2016.1185476
AlAjarmeh, O. S., Manalo, A. C., Benmokrane, B., Karunasena, K., Ferdous, W., & Mendis, P. (2020). Hollow concrete columns: Review of structural behavior and new designs using GFRP reinforcement. Engineering Structures203(15), 109829. https://doi.org/ 10.1016/j.engstruct.2019.109829
Anil, S., Kademani, B. S., Garg, R. G., & Kumar, V. (2010). Scientometric mapping of Tsunami publications: a citation based study. Malaysian Journal of Library & Information Science15(1), 23-40. https://mjlis.um.edu.my/index.php/MJLIS/article/view/6720
Asadi, M. & Ghaderi, S. (2015). Thirty-nine years of Iran’s scientific products in the field of Geophysics.  Journal of the Earth and Space Physics, 41(1), 147-166. https://doi.org/ 10.22059/jesphys.2015.53441 [In Persian].
Asnafi, A., & Pakdaman Naeini, M. (2015). A Survey on scientific collaboration rate in earthquake engineering and seismology researcher in SEE international conference during 1991-2011. Iranian Journal of Engineering Education, 16(64), 135-150. https://doi.org/10.22047/ijee.2015.7964 [In Persian].
Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M., ... & Vyhmeister, E. (2021). Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps. Frontiers in Earth Science, 9, 114, 628-772. https://doi.org/10.3389/feart.2021.628772
Bendle, L.J., & Patterson , I. (2008) Network Density, Centrality, and Communication in a Serious Leisure Social World. Annals of Leisure Research, 11:1-2, 1-19. https://doi.org/ 10.1080/11745398.2008.9686783
Bigdeloo, E. (2022). Intellectual Structure of Knowledge in information retrieval: A Co-Word Analysis. Scientometrics Research Journal, (In Press).  https://doi.org/10.22070/rsci.2022.14569.1501 [In Persian].
Bin, C., Weiqi, C., Shaoling, C., & Chunxia, H. (2021). Visual Analysis of Research Hot Spots, Characteristics, and Dynamic Evolution of International Competitive Basketball Based on Knowledge Mapping. SAGE Open.  ‌https://doi.org/10.1177/2158244020988725
Börner, K. (2010). Atlas of science: Visualizing what we know. Massachusetts: Mit Press. DOI 10.1007/s11192-011-0409-7
Brogi, A., Capezzuoli, E., Karabacak, V., Alcicek, M. C., & Luo, L. (2021). Fissure Ridges: A Reappraisal of Faulting and Travertine Deposition (Travitonics). Geosciences, 11(7), 278. https://doi.org/10.3390/geosciences11070278
Choi, H. T., & Kim, T. R. (2018). Necessity of management for minor earthquake to improve public acceptance of nuclear energy in South Korea. Nuclear Engineering and Technology, 50(3), 494-503. https://doi.org/10.1016/j.net.2017.11.013
Cibulka, S., & Giljum, S. (2020). Towards a comprehensive framework of the relationships between resource footprints, quality of life, and economic development. Sustainability, 12(11), 4734. https://doi.org/10.3390/su12114734
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011a). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1016/j.joi.2010.10.002
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011b). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/ 10.1002/asi.21525
Emmer, A. (2018). Geographies and scientometrics of research on natural hazards. Geosciences (Switzerland), 8(10). https://doi.org/10.3390/geosciences8100382
Fallah, M., Ghorobi, A., Noruzi, A., & Jafari, A. (2019, Springer). Scientometric Study of Scientific Publications in Seismology based on Web of Science. Rahyaft, 28(72), 61-76. https://www.sid.ir/paper/87820/fa [In Persian].
Flachenecker, F., Rentschler, J., & de Kleuver, W. (2018). Monitoring Resource Efficiency Developments: Indicators, Data, and Trends. In Investing in Resource Efficiency, 31-50, Cham. https://doi.org/10.1007/978-3-319-78867-8_3
Gizzi, F. T., & Potenza, M. R. (2020). The Scientific Landscape of November 23rd, 1980 Irpinia-Basilicata Earthquake: Taking Stock of (Almost) 40 Years of Studies. Geosciences, 10(12), 482. https://doi.org/10.3390/geosciences10120482
Grossi, L., Heim, S., & Waterson, M. (2014). A vision of the European energy future? The impact of the German response to the Fukushima earthquake. The Impact of the German Response to the Fukushima Earthquake, (July 15). ZEW-Centre for European Economic Research Discussion Paper, (14-051). https://ideas.repec.org/p/zbw/zewdip/14051.html
Hassanzadeh, M., Zandian, F., & Ahmadi Meinagh, S. (2018). Mapping the Cognitive Structure and Its Evolution in Knowledge and Information Science: A Text Mining Approach (2004-2013). Scientometrics Research Journal, 4(8). 123-142. https://journals.shahed.ac.ir/article_616.html [In Persian].
He, W., Liu, X., Qiu, J., Liu, J., Chen, J., & Zhang, C. (2021). Collaborative contribution networks and hotspot evolution in earthquake. Environmental Earth Sciences, 80(6), 1-14. https://doi.org/10.1007/s12665-020-09304-9
Hu, Y. X., Liu, S. C., & Dong, W. (1996). Earthquake engineering. New York: CRC Press.
Liu, X. (2012). A bibliometric study of earthquake research. 1900- 2010. Scientometrics, 92(3), 747-765. https://doi.org/10.1007/s11192-011-0599-z
May, P. J., Burby, R. J., & Kunreuther, H. (1998). Policy design for earthquake hazard mitigation: Lessons from energy conservation, radon reduction, and termite control. Earthquake spectra, 14(4), 629-650. https://doi.org/10.1193/1.1586019
Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Munoz-Fernández, F. J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129-145. https://doi.org/10.1023/B:SCIE.0000037368.31217.34
Najjar Lashgari, S., Zarei, H., Khalkhali, A., & Pali, S. (2023). Mapping the Intellectual Structure in the Field of Educational Management in Iran: Co- Word Analysis. Scientometrics Research Journal9((Issue 1, spring & summer)), 387-408. https://doi.org/10.22070/rsci.2021.14863.1517 [In Persian].
Nor, A. H. M., Sanik, M. E., Salim, S., Kaamin, M., Osman, M. H., Fuzairi, N., Alia, A. & Qurratu’Ain, N. (2021). A Systematic Literature Review on Earthquake Detector. Multidisciplinary Applied Research and Innovation, 2(2), 48 – 59. https://publisher.uthm.edu.my/periodicals/index.php/mari/article/view/1935
Noyons, E. C. M., & Van Raan, A. (1999). Integrating research performance analysis and science mapping. Scientometrics, 591-604. https://doi.org/10.1007/BF02459614
Odabasi, O., Kohrangi, M., & Bazzurro, P. (2021). Seismic collapse risk of reinforced concrete tall buildings in Istanbul. Bulletin of Earthquake Engineering, 1-27. https://doi.org/10.1007/s10518-021-01188-9
Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., & Yamamoto, A. (2004). Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net. Earth, Planets and Space56, xv-xxviii. https://doi.org/10.1186/BF03353076
Ross, M., Larson, E. D., & Williams, R. H. (1987). Energy demand and materials flows in the economy. Energy, 12(10-11), 953-967. https://doi.org/10.1016/0360-5442(87)90051-X
Simon, J., Bracci, J. M., & Gardoni, P. (2010). Seismic response and fragility of deteriorated reinforced concrete bridges. Journal of Structural Engineering136(10), 1273-1281. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000220
Steinberger, J. K., & Krausmann, F. (2011). Material and energy productivity. Environmental science & technology, 45(4), 1169–1176. ‌ https://doi.org/10.1021/es1028537
Wagner, C., & Leydesdorff, L. (2003). Seismology as a case study of distributed collaboration in science. Scientometrics58(1), 91-114. https://doi.org/10.1023/A:1025479524390
Wang, C., Wu, J., He, X., Ye, M., Liu, W., & Tang, R. (2019). Emerging trends and new developments in disaster research after the 2008 Wenchuan earthquake. International journal of environmental research and public health16(1), 29. https://doi.org/10.3390/ijerph16010029
Wu, X., Chen, X., Zhan, F. B., & Hong, S. (2015). Global research trends in landslides during 1991–2014: a bibliometric analysis. Landslides12, 1215-1226. https://doi.org/10.1007/s10346-015-0624-z
Yousefi Khoraem, M., Gasemi, H., Se talani, F., Keshavarz Turk, E., & Mousakhani, M. (2020). Clustering and mapping the 40-year trend of foresight research. Future study Management, 30(4), 41-54. https://jmfr.srbiau.ac.ir/article_16488.html [In Persian].
Zandi Ravan, N., davarpanah, M., & fattahi, R. (2017). Science Production Mapping in Iran, based on the Articles Indexed in Sciencefor Scientific Information (SCI-E). Library and Information Science Research, 7(1), 5-26. https://doi.org/10.22067/riis.v7i1.39601 [In Persian].
Zavaraqi, R., & Hamdipour, A. (2020). Identifying the scientific capabilities and competencies of the University of Tabriz based on its social, cognitive and intellectual capacities. Scientometrics Research Journal9(1), (Spring & Summer), 43-74. https://doi.org/10.22070/rsci.2020.5594.1405 [In Persian].
Zhang, Q., Lu, Q., Ye, X., Xu, S., Lin, L. K., Ye, Q., & Zeng, A. (2020). Did the 2008 Wenchuan earthquake trigger a change in the conduct of research on seismic risk?. Safety science125, 104628. https://doi.org/10.1016/j.ssci.2020.104628