Approaches and Methods for Predicting the Trend of Scientific Outputs: A Scoping review

Document Type : Research Paper

Authors

1 Ph.D. in Knowledge and Information Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Professor of Knowledge and Information Science, Department of Library and Information Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 Associate Professor of Knowledge and Information Science, Department of Evaluation and Resource Development, Regional Information Center for Science & Technology (RICeST), Shiraz, Iran.

Abstract

Purpose: Considering that the volume of publications is growing at an increasing speed, forecasting the research trend and identifying emerging issues is of particular importance. It should be noted that choosing the right method for accurately predicting the research trend is very important, which has been the focus of many researchers in recent years. In this regard, the present research aims to present the findings of research conducted in Iran and the world regarding the most important approaches and proposed methods for predicting the trend of scientific outputs in the future.
Methodology: The present study was conducted using the scoping review method. The implementation of the current research includes 5 stages: 1) Identifying research objectives, 2) Identifying related research, 3) Selecting research, 4) Data extraction, and 5) Summarizing, discussing, and reporting the results. To identify relevant research, international databases in English (ScienceDirect, Emerald, Scopus, Web of Science, and ProQuest) and Iranian databases in Persian (Magiran, Noormags, Civilica, SID, and Irandoc) were searched without considering the time limit. In this research, the PRISMA diagram was used for the sampling and data selection process, and the JBI evaluation tool was used to check the quality of selected sources. Finally, 117 effects were analyzed.
Findings: An overview of the studies carried out in forecasting research trends shows that these studies have attracted the most attention of researchers in the world and in Iran during the last two decades (especially from 2012 onwards), and the increasing trend in conducting these researches is evident. The most important studies conducted concerning the future of studies were the studies that identified trends and emerging research topics to determine the future direction of studies. In different periods, various approaches have been used to determine emerging issues and predict future research trends, which can be divided into 5 main categories: scientometric, quantitative and statistical, qualitative, mixed method, text mining, and machine learning. A review of studies showed that the most common approach used to identify emerging topics and predict future research trends was the scientometric approach. However, in recent years, due to the limitations of quantitative analysis and scientometric methods to determine the direction of future research, and with the increase in the volume of scientific production and the problems resulting from the analysis of large volumes of data, advances in computer technology and word processing tools. Text mining and machine learning approaches have been used to identify emerging areas and predict future research trends due to their high power in big data analysis along with traditional scientometric methods. The most important disciplines that have paid attention to the problem of predicting the trend of scientific outputs are related to sciences and engineering. It seems that paying attention to this issue in the mentioned fields can be because the speed of developments in these fields is higher and as a result of the necessity of conducting studies to predict the future developments of studies to synchronize and deal with them correctly before other fields and more has been The most important sources to be analyzed to achieve the future path of researches are the articles published in journals. The reason for the focus of these studies on journal articles can be that in any scientific field, articles are usually the result of research projects, theses, and other research experiences, which due to the limited access to these sources, can allow researchers to quickly access the results of these studies. and provide more convenience. On the other hand, scientific publications publish the latest scientific achievements and research findings in the shortest time, and this causes researchers and those engaged in scientific activities to be aware of the latest and most reliable scientific and research achievements. Therefore, to study the future trend of scientific outputs, articles have been considered more than other sources.
Conclusion: Different models and approaches have been proposed by researchers to follow the evolution of scientific products in the future. But it seems that a combination of quantitative and qualitative approaches is needed to make accurate and reliable predictions and overcome the limitations of each of these methods. Be used simultaneously. In addition, utilizing expert opinions can be considered as a complement to scientometric analysis to predict the future. Having a future research approach in scientific policy-making and research management can play an effective role in charting the prospects of scientific development and provide the possibility of policy-making and planning for the future for researchers and stakeholders in various fields.

Keywords


احمدیان دیوکتی، محمدمهدی، رازقی، نادر، آقاجانی، حسنعلی. (زودآیند). آینده‌‌پژوهی تولیدات علمی ایران تا سال 2030 با استفاده از مدل ARIMA. مطالعات کتابداری و علم اطلاعات.
امیری، سحر. (1397). پیش‌‌بینی روند کارکردهای مدیریت منابع انسانی (با استفاده از تحلیل سری‌‌های زمانی). پایان‌‌نامه‌‌ی کارشناسی ارشد، دانشگاه مازندران.
بامیر، موسی، چشم‌یزدان، محمدرضا. (1399). آینده‌پژوهی جهش برون‌دادهای پژوهشی ایران و آمریکا بر اساس یک مطالعه علم‌سنجی. دانش‌شناسی، 13 (51)، 52-59.
بایرامی، سمانه، موسی‌پور، نعمت‌الله. (1396). مطالعه تطبیقی سیاست‌های علمی کشورهای ترکیه و مالزی با تمرکز بر علوم انسانی. فصلنامه پژوهش‌های سیاسی جهان اسلام. ۷ (۴)، ۵۹-۸۷.
بردبار، غلامرضا، منتظری هدش، نرگس، آبی‌کاری، معصومه، موسی بیکی، فریده، زارع بنادکوکی، محمدرضا. (1393). پیش‌‌بینی روند پژوهش در مدیریت منابع انسانی با استفاده از تحلیل سری‌های زمانی‌ (با استناد به مقالات پایگاه‌های اطلاعاتی علمی). پژوهش‌های مدیریت منابع انسانی، 6 (4)، 207-235.
بیانلو، زهره، زارع احمدآبادی، حبیب. (1395). پیش‌‌بینی تحقیقات فناوری در قلمرو منتخب از انرژی خورشیدی: کاربرد تحلیل پتنت و شبکه عصبی مصنوعی. فصلنامه مدیریت توسعه فناوری، 4 (1)، 149-171.
پورقربان، شیوا، رفاه‌طلب، عصمت. (1398). آینده‌پژوهی روند تولید علم در دانشگاه‌های ایران بر اساس مطالعات علم‌سنجی. کنفرانس ملی آینده‌پژوهی، مدیریت و توسعه پایدار، تهران، دسترسی از طریق نشانی: https://civilica.com/doc/987557
توکلی، غلامرضا، بابکی‌‌راد، اعظم، قرونه، حسن. (1395). طراحی و توسعه‌‌ روش تحلیل موضوعات نوظهور. فصلنامه‌‌ امنیت‌پژوهی، 15 (53)، 151-181.
تیمورپور، بابک. (1388). کشف روندهای نوظهور در حوزه‌‌های علمی بر پایه خوشه‌‌بندی پویا با رویکرد متن‌‌‌کاوی و تحلیل پیوند. پایان‌‌نامه‌‌ی دکتری. دانشگاه تربیت مدرس، تهران.
جلالی، محمدجعفر. (1395). شناخت روندهای نوظهور و اکتشاف دانش در حوزه‌‌ تحلیل‌‌های پیشرفته کسب و کار با استفاده از روش‌‌های متن‌‌کاوی. پایان‌‌نامه‌‌ کارشناسی ارشد، دانشگاه علامه طباطبایی، تهران.
چشم‌یزدان، محمدرضا، بامیر، موسی، دهنویه، رضا، مسعود، علی، ستایش، امیرحسین، کارآموزیان، علی. (۱۳۹۹). مقایسه تولیدات علمی حوزه‌های اولویت‌دار نقشه جامع سلامت ایران با کشورهای چشم‌انداز افق ‌۱۴۰۴: یک مطالعه علم‌سنجی. مجله دانشکده پزشکی، ۷۸ (۷)، ۴۶۶-۴۷۲.
خطیر، اشکان. (1397). تحلیل روند علمی کشور و پیش‌‌بینی فناوری با استفاده از روش‌‌های یادگیری ماشین مورد مطالعه: سامانه گنج. پایان‌‌نامه‌‌ دکتری. پژوهشگاه علوم و فناوری اطلاعات ایران، تهران.
دشتی مطلق استاد، حسین. (1394). پیش‌بینی تولیدات علمی در قلمرو نوآوری باز با کاربرد متن‌کاوی و شبکه‌های عصبی مصنوعی. پایان‌‌نامه‌‌ کارشناسی ارشد، دانشگاه یزد.
دهقان منشادی، طیبه. (1391). پیش‌بینی روند پژوهش‌‌های علمی در مدیریت صنعتی با شبکه عصبی مصنوعی (مطالعه موردی: حوزه کارآفرینی). پایان‌‌نامه‌‌ کارشناسی ارشد، دانشگاه یزد.
رزاز رحمتی، سینا. (1396). پیش‌‌بینی روند علم در انرژی‌‌های تجدیدپذیر به کمک شبکه‌‌های عصبی مصنوعی. پایان‌‌نامه‌‌ کارشناسی ارشد، مؤسسه‌‌ آموزش عالی امام جواد (ع)، یزد.
رضائیان ابریشمی، مینا. (1393). آینده‌پژوهی قلمرو مهندسی باد در علم فیزیک ساختمان: کاربرد متن‌کاوی، شبکه‌های عصبی مصنوعی و تحلیل مورفولوژیک. پایان‌‌نامه‌‌ کارشناسی ارشد، دانشگاه یزد.
رضائیان، مینا؛ زارع احمدآبادی، حبیب؛ منتظری، حمید. (1393). آینده‎نگاری علم در فناوری بادگیر: کاربرد چرخه حیات متن‎کاوی و تحلیل خوشه‎ای. فصلنامه مدیریت توسعه فناوری، 2 (3)، 185-163.
زارع بنادکوکی، محمدرضا. (1389). پیش‌بینی روند پژوهش در مهندسی صنایع به کمک شبکه‌های عصبی. پایان‌نامه‌‌ی کارشناسی ارشد، دانشگاه یزد.
شکوهیار، سجاد، و مهمان‌دوست، علی. (1394). ترسیم افق داده‌‌کاوی از طریق آینده‌‌پژوهی. چشم‌‌انداز مدیریت دولتی، (21)، 99-120.
صالحی آسفیچی، طاهر. (1391). پیش‌بینی روند پژوهش‌های علمی در حوزه تکنیک‌های فراابتکاری. پایان‌نامه‌‌ کارشناسی ارشد. دانشگاه یزد.
عباسی، فاطمه، سهرابی، بابک؛ خدیور، آمنه، مانیان، امیر. (1396). ارائه‌‌ مدلی جهت پیش‌بینی موضوعات مرتبط با هوشمندی کسب‌وکار. نشریه علمی مدیریت اطلاعات، 3 (1)، 57-78.
عبدالملکی، حسین، حیدری، فاطمه، اللهیاری، محبوبه، زکی‌زاده، سید بهادر. (1397). آینده پژوهش‏های مدیریت ورزشی در دانشگاه‏های کشور. مدیریت و توسعه ورزش، 7 (4)، 56-68.
عبدخدا، هیوا، قاضی میرسعید، جواد، نوروزی، علیرضا. (1389). بررسی میزان تولیدات علمی حوزه پزشکی ایران بر مبنای مدارک نمایه‌شده از مجلات علمی در پایگاه‌های اطلاعاتی منتخب، در فاصله‌ سال‌های ۲۰۰۹-۲۰۰۵. پیاورد سلامت، ۴ (۲ و ۱)، ۱۸-۳۰.
غلام‌پور، بهزاد، صبوری، علی‌اکبر، نوروزی، علیرضا. (۱۳۹۹). مصورسازی موضوعات داغ و نوظهور حوزه بیوشیمی و زیست‌شناسی مولکولی ایران. پژوهشنامه پردازش و مدیریت اطلاعات. ۳۵(۴)، ۱۱۱۹-۱۱۴۸.
فدایی، غلامرضا، حسن‌‌زاده کمند، هایده. (۱۳۸۹). بررسی تولیدات علمی اعضای هیئت علمی حوزه علوم انسانی دانشگاه تبریز طی سال‌های ۱۳۸6- ۱۳۸1. تحقیقات اطلاع‌رسانی و کتابخانه‌های عمومی، ۱۶ (۲)، ۱۵۸-175.
قرونه، حسن، بابکی‌راد، اعظم. (1396). تحلیل موضوعات نوظهور امنیتی مهاجرت در شهر مشهد. دانش انتظامی، 9 (37)، 1-44.
قضاوی، رقیه. (1398). مطالعه‌‌ روند و پیش‌‌بینی توسعه علم در حوزه‌‌ اختلالات عملکردی گوارش با استفاده از روش‌‌های مختلف تحلیل موضوعی با رویکرد آینده‌‌نگرانه در تولیدات علمی این حوزه. پایان‌نامه‌‌ دکتری، دانشگاه شهید چمران اهواز.
کریمی دهکردی، اعظم. (1396). بررسی روند گذشته و پیش‌‌بینی تولید علم در قلمرو مزارع بادی بر اساس روش‌‌های متن‌‌کاوی و چرخه حیات. پایان‌‌نامه‌‌ کارشناسی ارشد، دانشگاه یزد.
مختاری شمسی، مجتبی، توکلی‌زاده راوری، محمد، زال‌زاده، ابراهیم، باغبانیان، محمود. (1395). پیش‌بینی مفاهیم اساسی یک حوزه بر اساس شاخص‌های قدمت و فراوانی استفاده از اصطلاحات موضوعی: مورد مطالعه سرطان کولون. مدیریت اطلاعات سلامت، 13(5)، (پیاپی 51)، 354-359.
مصدق‌راد، علی‌محمد، اصفهانی، پروانه، کریمی، فرشته. (1399). تعرفه خدمات بیمارستانی: یک مرور مفهومی. تحقیقات نظام سلامت حکیم، 23 (89)، 246-259.
مکی‌‌زاده، فاطمه، نایب مهدی‌آبادی، نعیمه، زال‌زاده، ابراهیم، توکلی‌زاده راوری، محمد. (1396). شناسایی موضوعات نوظهور در حوزه ژنتیک: یک تحلیل علم‌سنجی. نشریه دانشگاه علوم پزشکی شهید صدوقی یزد، ۲۵(۴)، ۲۵۲-۲۶۳.
منصورکیائی، ربابه، باب‌الحوایجی، فهیمه، نوشین فرد، فاطمه، سهیلی، فرامرز. (1398). مطالعه وضعیت آینده اشاعه تولیدات علمی پژوهشگران علم اطلاعات و دانش‌شناسی در شبکه‌های اجتماعی از دیدگاه متخصصان ایرانی. کتابداری و اطلاع‌رسانی، 22 (3)، 136-163.
مهربان، سحر. (1393). آینده‌‌پژوهی در علم فناوری نانو. پایان‌‌نامه‌‌ی دکتری، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران.
موسی بیکی ده‌آبادی، فریده. (1393). چشم‌‌انداز تحقیقات آتی بر مبنای تجارب گذشته در حوزه‌‌ بازاریابی گردشگری. پایان‌‌نامه‌‌ کارشناسی ارشد، دانشگاه یزد.
ناظمی، امیر، شماعی، علی، قدیری، روح‌اله. (1393). شناسایی حوزه‌های نوظهور بر اساس تحلیل چرخه عمر فناوری به‌عنوان نمونه فناوری زیردریایی‌های بدون سرنشین. فصلنامه مدیریت توسعه فناوری، 1 (3)، 29-48.
نظرزاده زارع، محسن، جمالی، احسان؛ آرئین، محمدعلی؛ اسکروچی، رامتین؛ نصیری فیروز، علیرضا. (1393). مقایسه تولیدات علمی ایران با کشورهای رقیب خاورمیانه در حوزه‌ تعلیم و تربیت. مجله علم‌سنجی کاسپین. ۱ (۲)، ۲۲-۳۱.
نوروزی چاکلی، عبدالرضا. (1398). سخن سردبیر: بحران کرونا، پژوهش مجازی و علم‌سنجی مجازی. پژوهش‌نامه علم‌سنجی، 5 (10)، 1-2.
نیازی، عیسی. (1391). آینده‌‌نگاری تولیدات علمی حوزه‌‌ زیست‌فناوری (بیوتکنولوژی) تا سال 2025 با استفاده از مدل ARIMA. مطالعات آینده‌‌پژوهی، 1 (2)، 83-98.
یگانه فلاح، آزوم. (1386). شناسایی روندهای نوظهور در دانش نانوبیوتکنولوژی با استفاده از متن‌‌کاوی. پایان‌‌نامه‌‌ کارشناسی ارشد. دانشگاه تربیت مدرس، تهران.
 
Abbasi, F.; Sohrabi, B.; Khadivar, A.; Manian, A. (2017). Presenting a Model to Predict Business Intelligence Domain. Iranian Journal of Information Management, 3(1), 57-78. [In Persian]
Abdekhoda, H.; Ghazi MirSaeed, S.; Nourzi, A. (2010). Evaluation of Scientific Production of Iranian Medical domain based on the document indexed from scientific journals in chosen databases, between 2005-2009. payavard, 4(2 and 1), 18-30. [In Persian]
Abdolmaleki, H.; Heidari, F.; Allahyari, M.; Zakizadeh, S. B. (2019). Future of sport management researches in Iran’s Universities. Sport Management and Development, 7(4), 56-68. doi:10.22124/jsmd.2019.3252. [In Persian]
Abuhaya, T.; Nigatie, Y.; Kovalchuk, S. (2018). Towards Predicting Trend of Scientific Research Topics using Topic Modeling. Procedia Computer Science, 136, 304-310. doi:10.1016/j.procs.2018.08.284.
Akinlolu, M.; Haupt, T. C.; Edwards, D. J.; & Simpeh, F. (2020). A bibliometric review of the status and emerging research trends in construction safety management technologies. International Journal of Construction Management, 57(5), 1358-1379. doi:10.1080/15623599.2020.1819584
Alaphat, A.; Jiang, M. (2020). SmartFund: Predicting Research Outcomes with Machine Learning and Natural Language Processing. 2020 IEEE International Conference on Big Data. doi:10.1109/BigData50022.2020.9378206
Amiri, S. (2018). Predicting the trend of human resource management functions (using time series analysis). Master's thesis, Mazandaran University, Iran. [In Persian]
Arksey, H.; O'Malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19-32. doi:10.1080/1364557032000119616
Aromataris, E.; Fernandez, R.; Godfrey, C.; Holly, C.; Kahlil, H.; Tungpunkom, P. (2015). Summarizing systematic reviews: methodological development, conduct and reporting of an Umbrella review approach. International Journal of Evidence-Based Healthcare, 13(3), 132-40. doi:10.1097/XEB.0000000000000055
Bai, X. (2018). Predicting the Number of Publications for Scholarly Networks. IEEE Access, 6, 11842–11848. doi:10.1109/ACCESS.2018.2812804
Bajocco, S.; Raparelli, E.; Teofili, T.; Bascietto, M.; Ricotta, C. (2019). Text mining in remotely sensed phenology studies: A review on research development, main topics, and emerging issues. Remote Sensing, 11(23), 1-22. doi:10.3390/rs11232751
Balili, C.; Segev, A.; Lee, U. (2017). Tracking and Predicting the Evolution of Research Topics in Scientific Literature. IEEE International Conference on Big Data (Big Data). doi:10.1109/BigData.2017.8258108
bamir, M.; Cheshmyazdan, M. (2021). Future studies Mutation of Iranian and American scientific products based a scientometric study: A Brief report. Journal of Knowledge Studies, 13(51), 52-59. [In Persian]
Bardbar, G.; Montazeri Hadesh, N.; Abi Kari, M.; Musa Biki, F.; Zare Benadkoki, M. (2015). Prediction of Research Process in Human Resource Management by Using Time Series Analysis. Human Resource Management Researches, 6(4), 207-235. [In Persian]
Bayanloo, Z.; Zare Ahmadabadi, H. (2016). Technology Forecasting Researches in Selected area of Solar Energy: Use the patent Analysis and Artificial Neural Network. Journal of Technology Development Management, 4(1), 149-171. doi:10.22104/jtdm.2017.499. [In Persian]
Bayrami, S.; Musapour, N. (2018). A comparative study of scientific policies of Turkey and Malaysia with a focus on humanities. Islamic World Political Research Quarterly, 7(4), 59-87. [In Persian]
Bert, A. (2019). 3 scenarios for the future of research– which is most likely?. Experts at AAAS weigh in on the new Research Futures study by Elsevier and Ipsos MORI. Available on December 9, 2019, from: https://www.elsevier.com/connect/3-scenarios-for-the-future-of-research-which-is-most-likely.
Bildosola, I.; Gonzalez, P.; & Moral, P. (2017). An approach for modelling and forecasting research activity related to an emerging technology. Scientometrics, 112, 557–572. doi:10.1007/s11192-017-2381-3
Bolelli, L.; Ertekin, S.; Giles, C. L. (2009). Topic and trend detection in text collections using Latent Dirichlet Allocation. Proceedings of the 31th European Conference on IR Research on Advances in Information Retrieval. doi:10.1007/978-3-642-00958-7_84
Bornmann, L.; Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. Journal of the association for information science and technology. 66(11), 2215-2222. doi:10.1002/asi.23329
Budi, A.; Rizal, F. A.; Widodo, A. (2013). Prediction of Research Topics on Science & Technology (S&T) using Ensemble Forecasting. International Journal of Software Engineering and Its Applications, 7(5), 253-268. doi:10.14257/ijseia.2013.7.5.23
Cai, C.; Linnenluecke, M. K.; Marrone, M.; Singh, A. K. (2019). Machine Learning and Expert Judgement: Analysing Emerging Topics in Accounting and Finance Research in the Asia-Pacific. Abacus, 55(3), 709-733. doi:10.1111/abac.12179
Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377. doi:10.1002/asi.20317
Chen, C.; Hu, Z.; Liu, S.; Tseng, H. (2012). Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther, 12(5), 593-608. doi:10.1517/14712598.2012.674507
Chen, C.; Wang, Z.; Li, W.; Sun, X. (2018). Modeling Scientific Influence for Research Trending Topic Prediction. Thirty-Second AAAI Conference on Artificial Intelligence. doi:10.1609/aaai.v32i1.11882
Chena, H.; Fenga, Y.; Lia, Sh.; Zhangb, Y.; Yanga, X. (2019). Bibliometric analysis of theme evolution and future research trends of the type a personality. Personality and Individual Differences, 150(1), 1-11. doi:10.1016/j.paid.2019.109507
Cheshmyazdan, M.; Bamir, M.; Dehnavieh, R.; Masoud, A.; Setayesh, A. H.; Karamoozian, A. (2020). Comparing scientific production of prioritized health areas of Iran's comprehensive scientific map with outlook horizon 1404 countries, a scientometric study: brief report. Tehran University Medicine Journal, 78(7), 466-472. [In Persian]
Cho, J. H.; Lee, J; & Sohn, S.Y. (2021). Predicting future technological convergence patterns based on machine learning using link prediction. Scientometrics 126, 5413–5429. doi:10.1007/s11192-021-03999-8
Choi, Y.; Park, S.; & Lee, S. (2021). Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data. Scientometrics, 126, 5431–5476. doi:10.1007/s11192-021-04001-1
Cozzens, S.; Gatchair, S.; Kang, J.; Kim, K.; Lee, H.; Ordóñez, G.; & Porter, A. (2010). Emerging technologies: Quantitative identification and measurement. Technology Analysis & Strategic Management, 22(3), 361–376. doi:10.1080/09537321003647396
Dashti Mutlaq Ostad, H. (2014). Prediction of scientific productions in the field of open innovation using text mining and artificial neural networks. Master's thesis, Yazd University, Iran. [In Persian]
Daudt, H. M.; Van Mossel, C.; Scott, S. J. (2013). Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. BMC Med Res Methodol, 13(48), 1-9. doi:10.1186/1471-2288-13-48
de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515. doi:10.1126/science.149.3683.510
Dehghan Manshadi, T. (2012). Predicting the trend of scientific research in industrial management with artificial neural network (case study: entrepreneurship field). Master's thesis, Yazd University, Iran. [In Persian]
Érdi, P.; Makovi, K.; Somogyvári, Z.; Strandburg, K.; Tobochnik, J.; Volf, P.; & Zalányi, L. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95, 225–242. doi:10.1007/s11192-012-0796-4
Evans, J. A.; Foster, J. G. (2011). Metaknowledge. Science. 331(6018), 721–725. doi:10.1126/science.1201765
Fadaei, Gh.; Hassanzadeh Kamand, H. (2010). Evaluation of Scientific Publications of Faculty Members of Human Sciences Department in Tabriz University during 2002-2007. Research on Information Scienc & Public Libraries, 16(2), 158-175. [In Persian]
Ghazavi, R. (2019). Studying the trend and forecasting the development of science in the field of digestive functional disorders using different methods of thematic analysis with a forward-looking approach in the scientific productions of this field. PhD thesis, Shahid Chamran University of Ahvaz. [In Persian]
Gholampour, B.; Saboury, A. A.; Noruzi, A. (2022). Visualizing Hot and Emerging Topics in Biochemistry and Molecular Biology in Iran. Iranian Journal of Information Processing and Management35(4), 1119-1148. doi:10.35050/JIPM010.2020.031. [In Persian]
Glanzel, W. (2012). Bibliometric methods for detecting and analysing emerging research topics. El profesional de la informacion, 21(1), 194-201. doi:10.3145/epi.2012.mar.11
Glanzel, W.; & Thijs, B. (2012). Using ‘core documents’ for detecting and labelling new emerging topics. Scientometrics, 91(2), 399–416. doi:10.1007/s11192-011-0591-7
Gregorio, G.; Llorente, P.; & Ramos, J. M. (2016). Bibliometric indicators to identify emerging research fields: Publications on mass gatherings. Scientometrics, 109, 1283–1298. doi:10.1007/s11192-016-2083-2
Guo, H.; Weingart, S.; Borner, K. (2011). Mixed-indicators model for identifying emerging research areas. Scientometrics, 89(1), 421–435. doi:10.1007/s11192-011-0433-7
Guodong Ji, W. Z. (2012). Constructed wetlands, 1991–2011: A review of research development, current trends and future directions. Science of the Total Environment, 441(15), 19–27. doi:10.1016/j.scitotenv.2012.09.064
He, Q.; Chen, B.; Pei, J.; Qiu, B.; Mitra, P.; Giles, L. (2009). Detecting topic evolution in scientific literature: How can citations help? In ACM 18th International Conference on Information and Knowledge Management, CIKM 2009, 957-966. doi:10.1145/1645953.1646076
Ho, J., Saw, E., Lu, L., & Liu, J. (2014). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological Forecasting and Social Change, 82, 66–79. doi:10.1016/j.techfore.2013.06.004
Hoz-Correa, A.; Munoz-Leiva, F.; Bakucz, M. (2018). Past themes and future trends in medical tourism research: A co-word analysis. Tourism Management, 65, 200-211. doi:10.1016/j.tourman.2017.10.001
Jalali, M. J. (2016). Understanding emerging trends and knowledge discovery in the field of advanced business analysis using text mining methods. Master's thesis, Allameh Tabatabai University, Tehran, Iran. [In Persian]
Jarić, I.; Knežević-Jarić, J.; & Lenhardt, M. (2014). Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences. Scientometrics, 100(2), 519–529. doi:10.1007/s11192-014-1268-9
Jeong, Y.; Park, I.; Yoon, B. (2019). Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data. Technological Forecasting and Social Change, 146, 655-672. doi:10.1016/j.techfore.2018.05.010
Jia, Q.; Wei, L.; Li, X. (2019). Visualizing Sustainability Research in Business and Management (1990–2019) and Emerging Topics: A Large-Scale Bibliometric Analysis. Sustainability, 11(20), 1-37. doi:10.3390/su11205596
Jia, T.; Luo, C.; Wang, S.; Wang, Z.; Lu, X.; Yang, Q.; Zhu, C. (2020). Emerging Trends and Hot Topics in Cardiopulmonary Resuscitation Research: A Bibliometric Analysis from 2010 to 2019. Med Sci Monit, 9(26), 1-14. doi:10.12659/MSM.926815
Joung, J.; Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change, 114, 281–292. doi:10.1016/j.techfore.2016.08.020
Karimi Dehkordi, A. (2017). Examining the past trend and forecasting the production of science in the field of wind farms based on text mining and life cycle methods. Master's thesis, Yazd University, Iran. [In Persian]
Kenekayoro, P. (2020). Author and Keyword Bursts as Indicators for the Identification of Emerging or Dying Research Trends. Journal of Scientometric Research, 9(2),120-126. doi:10.5530/jscires.9.2.15
Khatir, A. (2015). Analysis of the country's scientific trend and technology forecasting using machine learning methods studied: Ganj portal. PhD thesis. Research Institute of Information Science and Technology of Iran, Tehran, Iran. [In Persian]
Khitous, F.; Strozzi, F.; Urbinati, A.; Alberti, F. (2020). A Systematic Literature Network Analysis of Existing Themes and Emerging Research Trends in Circular Economy. Sustainability, 12(4), 1-24. doi:10.3390/su12041633
Kim, M.; & Chen, C. (2015). A scientometric review of emerging trends and new developments in recommendation systems. Scientometrics, 104(1), 239–263. doi:10.1007/s11192-015-1595-5
Krampen, G.; Von eye, A.; Schui, G. (2011). Forecasting trends of development of psychology from a bibliometric perspective. Scientometrics, 87(3), 687-94. doi:10.1007/s11192-011-0357-2
Krenn, M.; Zeilinger, A. (2020). Predicting research trends with semantic and neural networks with an application in quantum physics. PNAS, 117(4), 1910-1916. doi:10.1073/pnas.191437011
Lee, C.; Kwon, O.; Kim, M.; Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change, 127, 291–303. doi:10.1016/j.techfore.2017.10.002
Lee, C.; Lee, G. G.; Jang, M. (2007). Dependency structure language model for topic detection and tracking. Information Processing & Management, 43, 1249–1259. doi:10.1016/j.ipm.2006.02.007
Lee, W. (2008). How to identify emerging research fields using scientometrics: An example in the field of Information Security. Scientometrics, 76(3), 503–525. doi:10.1007/s11192-007-1898-2
Lee, Z.; Gosain, S.; Im, I. (1997). Topics of interest in IS: Evolution of themes and differences between research and practice. Information & Management, 36, 233–246. doi:10.1016/S0378-7206(99)00022-1
Levac, D.; Colquhoun, H.; O'Brien, K. K. (2010). Scoping studies: advancing the methodology. Implementation Science, 5(69), 1-9. doi:10.1186/1748-5908-5-69
Li, M. (2017). An exploration to visualise the emerging trends of technology foresight based on an improved technique of co-word analysis and relevant literature data of WOS. Technology Analysis & Strategic Management, 29(6), 655–671. doi:10.1080/09537325.2016.1220518
Li, X.; Xiea, Q.; Daimb, T.; Huanga, L. (2019). Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology. Technological Forecasting & Social Change, 146, 432-449. doi:10.1016/j.techfore.2019.01.012
Liang, Z.; Mao, J.; Lu, K.; Ba, Z.; Li, G. (2021). Combining deep neural network and bibliometric indicator for emerging research topic prediction. Information Processing & Management, 58(5), 1-18. doi:10.1016/j.ipm.2021.102611
Linea, N. D.; Runyanb, R. C. (2012). Hospitality marketing research: Recent trends and future directions. International Journal of Hospitality Management, 31(2), 477– 488. doi:10.1016/j.ijhm.2011.07.006
Lu, C.; Hou, H.; Ding, Y.; & Zhang, C. (2019). Review of international studies on discovering emerging topics. Journal of the China Society for Scientific and Technical Information, 38(1), 97–110.
Madlock-Brown, C. R. (2014). A framework for emerging topic detection in biomedicine. Doctoral thesis, University of Iowa.
Makkizadeh, F.; Nayeb Mahdiabadi, N.; Zalzadeh, E.; Tavakkoizadeh Ravari, M. (2017). Identifying Emerging Topics in the Field of Genetics: A Scientometrics Analysis. Journal of Shahid Sadoughi University of Medical Sciences, 25(4), 252-263. [In Persian]
Mansourkiaie, R.; Babalhavaegi, F.; Nooshinfard, F.; Soheili, F. (2019). Study of the Future of the Dissemination of Scientific Productions of Knowledge and Information Science in Social Networks from the Iranian Experts’ Viewpoint. Library and Information Sciences, 22(3), 136-163. doi:10.30481/lis.2019.156392.1462 [In Persian]
Mao, B.; Zhang, C.; Yang, L.; Wang, Y.; Su, C.; Zhao, H.; Shao, Y.; Liu, Q. (2020). Visualizing the Research Hotspots and Emerging Trends in Neural Tube Defects: A Review. Iran J Public Health, 49(3), 416-425. doi:10.18502/ijph.v49i3.3122
Mehrban, S. (2014). Future studies in the science of nanotechnology. PhD thesis, Islamic Azad University, Science and Research Unit, Tehran. [In Persian]
Moerchen, F.; Fradkin, D.; Dejori, M. & Wachmann, B. (2008). Emerging trend prediction in biomedical literature. AMIA Annual Symposium Proceedings, 6, 485-489.
Mokhtari-Shamsi, M.; Tavakolizadeh-Ravari, M.; Zalzadeh, E.; Baghbanian, M. (2016). Predicting Basic Concepts of a Field, Based on the Factors of Oldness and Frequency Use of Subject Terms: A Case Study on Colon Cancer. Health Information Management, 13(5), 354-359. [In Persian]
Mosadeghrad, A. M.; Isfahani, P.; Karimi, F. (2020). Hospital Tariffs: A Conceptual Analysis. Hakim, 23(2), 246-259. [In Persian]
Mosicheva, I.; Svetlana, P.; Vladislava, D.; Bezrodnova, K.; Lyagushkina, E.; Bogatov, V.; Khaltakshinova, N.; Korobatov, V.; Mikhailenko, I. (2018). Forecasting the number of publication based on Web of Science and Scopus data integral index. Nauchnye I tekhnicheskie biblioteki-scientific and technical libraries, 7, 60-83. doi:10.33186/1027-3689-2018-7-60-83
Munn, Z.; Peters, M. D.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review aproach. BMC Med Res Methodol, 18(143), 1-7. doi:10.1186/s12874-018-0611-x
Musa Biki Deh Abadi, F. (2014). Prospects for Future studies based on past experiences in the field of tourism marketing. Master's thesis, Yazd University, Tehran. [In Persian]
Nazarzadeh Zare, M.; Jamali, E.; Arein, M. A.; Skrouchi, R.; Nasiri Firuz, A. R. (2014). A Comparison of Scientific Productions of Iran with Competitor Countries in the Middle East in the Field of Education. Caspian Journal of Scientometrics, 1(2), 22-31. [In Persian]
Nazemi, A.; Shamaee, A.; Gadiri, R. (2014). Identification of Emerging Areas Based on Technology Life Cycle: Unmanned Underwater Vehicles Technology as a Sample. Journal of Technology Development Management, 1(3), 29-48. doi:10.22104/jtdm.2014.62 [In Persian]
Niazi, A. (2012). Foresight of scientific productions in the field of biotechnology (biotechnology) until 2025 using the ARIMA model. Future Studies, 1(2), 83-98. [In Persian]
Noroozi Chakoli, A. (2019). Note from the Editor-in-Chief: Corona Crisis, Virtual Research, and Virtual Scientometrics. Scientometrics Research Journal5(10), 1-2. doi:10.22070/rsci.2019.1129 [In Persian]
Ohniwa, R.; Hibino, A.; & Takeyasu, K. (2010). Trends in research foci in life science fields over the last 30 years monitored by emerging topics. Scientometrics, 85(1), 111–127. doi:10.33186/1027-3689-2018-7-60-83
Padalkar, M.; Gopinath, S. (2016). Six decades of project management research: Thematic trends and future opportunities. International Journal of Project Management, 34(7), 1305-1321. doi:10.1016/j.ijproman.2016.06.006
Parlina, A.; Ramli, K.; Murfi, H. (2021). Exposing Emerging Trends in Smart Sustainable City Research Using Deep Autoencoders-Based Fuzzy C-Means. Sustainability, 13(5), 1-28. doi:10.3390/su13052876
Pestanaa, M. H.; Sanchezc, A. V.; Moutinho, L. (2019). The network science approach in determining the intellectual structure, emerging trends and future research opportunities – An application to senior tourism research. Tourism Management Perspectives, 31, 370-382. doi:10.1016/j.tmp.2019.07.006
Peters, M. D.; Godfrey, C. M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare, 13(3), 141–146. doi:10.1097/XEB.0000000000000050
Pinheiro, A.; Govind, M. (2020). Emerging Global Trends in Urban Agriculture Research: A Scientometric Analysis of Peer-reviewed Journals. Journal of Scientometric Research, 9(2), 163-173. doi:10.5530/jscires.9.2.20
Piotrowski, C. (2015). Emerging research on social media use in education: a study of dissertations. Research in Higher Education Journal, 27, 1-12.
Porter, A. L.; Garner, J.; Carley, S. F.; Newman, N. C. (2018). Emergence scoring to identify frontier R&D topics and key players. Technological Forecasting and Social Change, 146, 628–643. doi:10.1016/j.techfore.2018.04.016
Pourqorban, S.; Welfarist, A. (2019). Future studies of science production process in Iranian universities based on scientometric studies. National Conference on Future Studies, Management and Sustainable Development, Tehran, access via address: https://civilica.com/doc/987557. [In Persian]
Qoruneh, H.; Babaki Rad, A. (2017). Analysis of Emerging Immigration Security Issues in Mashhad. Journal of Security Research, 16(57), 37-70. [In Persian]
Ratten, V. (2019). Sport entrepreneurship and public policy: future trends and research developments. Journal of Entrepreneurship and Public Policy, 8(1), 207-216. doi:10.1108/JEPP-D-18-00099
Razaz Rahmati, S. (2017). Forecasting the science trend in renewable energy with the help of artificial neural networks. Master's thesis, Imam Javad Institute of Higher Education (AS), Yazd, Iran. [In Persian]
Razeghi, N.; Aghajani, H. (2020). Future studies of Iran scientific studies by 2030 by using ARIMA model. Journal of Studies in Library and Information Science, 12(1), -. doi:10.22055/slis.2018.21800.1334 [In Persian]
Rezaeian, M.; Zare AhmadAbadi, H.; Montazeri, H. (2014). Science Foresight in Wind-catcher Technology: Application of Life-cycle, Text Mining and Cluster Analysis. Journal of Technology Development Management2(3), 163-185. doi:10.22104/jtdm.2015.185. [In Persian]
Rezaian Abrishmi, M. (2014). Future studies of the field of wind engineering in building physics: application of text mining, artificial neural networks and morphological analysis. Master's thesis, Yazd University, Iran. [In Persian]
Rodrigueza, J.; Contrerasb, C.; Olivabc, E. (2019). Discovering emerging research topics for brand personality: A bibliometric analysis. Australasian Marketing Journal. 27(4), 261-272. doi:10.1016/j.ausmj.2019.06.002
Ruiz-Real, J. L.; Uribe-Toril, J.; Torres Arriaza, J. A.; de Pablo Valenciano, J. (2020). A Look at the Past, Present and Future Research Trends of Artificial Intelligence in Agriculture. Agronomy10(11), 1-16. doi:10.3390/agronomy10111839
Salatino, A. (2015). Early Detection and Forecasting of Research Trends. In: 14th International Semantic Web Conference, 11-15 Oct 2015, Bethlehem (PA), USA.
Salehi Asefichi, T. (2012). Forecasting the trend of scientific research in the field of meta-heuristic techniques. Master's thesis. Yazd University, Iran. [In Persian]
Santo, M. M.; Coelho, G. M.; Santos, D. M.; Filho, L. F. (2006). Text mining as a valuable tool in foresight exercises: A study on nanotechnology. Technological Forecasting & Social Change, 73(8), 1013–1027. doi:10.1016/j.techfore.2006.05.020
Saria, N.; Suharjitoa, S.; Widodo, A. (2012). Trend Prediction for Computer Science Research Topics Using Extreme Learning Machine. Procedia Engineering, 50, 871–881.
doi:10.1016/j.proeng.2012.10.095
Shibata, N.; Kajikawa, Y.; Takeda, Y.; & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758–775. doi:10.1016/j.technovation.2008.03.009
Shokuhyar, S.; Mehmandoost, A. (2014). Drawing the horizon of data mining through future research. Public Administration Perspaective, (21), 99-120. [In Persian]
Singh, N.; Hu, C.; Roehl, W. S. (2007). Text mining a decade of progress in hospitality human resource management research: Identifying emerging thematic development. International Journal of Hospitality Management, 26(1), 131-147. doi:10.1016/j.ijhm.2005.10.002
Smalheiser, N. (2001). Predicting emerging technologies with the aid of text-based data mining: The micro approach. Technovation, 21(10), 689–693. doi:10.1016/S0166-4972(01)00048-7
Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3), 595-610. doi:10.1007/s11192-006-0132-y
Small, H.; Boyack, K. W.; & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8), 1450-1467. doi:10.1016/j.respol.2014.02.005
Sohrabi, B.; Khalilijafarabad, A. (2018). Systematic method for finding emergence research areas as data quality. Technological Forecasting and Social Change, 137, 280-287. doi:10.1016/j.techfore.2018.08.003
Soriano, A.; Alvarez, C. & Valdes, R. (2018). Bibliometric analysis to identify an emerging research area: Public relations intelligence—A challenge to strengthen technological observatories in the network society. Scientometrics, 115(3), 1591–1614. doi:10.1007/s11192-018-2651-8
Takeda, Y.; & Kajikawa, Y. (2009). Optics: A bibliometric approach to detect emerging research domains and intellectual bases. Scientometrics, 78(3), 543–558. doi:10.1007/s11192-007-2012-5
Taşkın, Z. (2021). Forecasting the future of library and information science and its sub-fields. Scientometrics, 126, 1527–1551. doi:10.1007/s11192-020-03800-2
Tavakoli, Gh.; Babkirad, A.; Qoruneh, H. (2016). Designing and developing the method of analyzing emerging issues. Security Studies Quarterly, 15(53), 151-181. [In Persian]
Teimurpur, B. (2009). Discovering emerging trends in scientific fields based on dynamic clustering with the approach of text analysis and link analysis. PhD thesis. Tarbiat Modares University, Tehran, Iran. [In Persian]
Tricco, A. C.; Lillie, E.; Zarin, W.; O'Brien, K.; Colquhoun, H.; Kastner, M.; et al. (2016). A scoping review on the conduct and reporting of scoping reviews. BMC Medical Research Methodology, 16(15), 1-10. doi:10.1186/s12874-016-0116-4
Tseng, Y. H.; Lin, Y. I.; Lee, Y. Y.; Hung, W. C.; Lee, C. H. (2009). A comparison of methods for detecting hot topics. Scientometrics, 81(1), 73-90. doi:10.1016/j.ipm.2011.07.006
Tu, Y.; & Seng, J. (2012). Indices of novelty for emerging topic detection. Information Processing and Management, 48(2), 303–325. doi:10.1016/j.ipm.2011.07.006
Upham, S.; & Small, H. (2010). Emerging research fronts in science and technology: Patterns of new knowledge development. Scientometrics, 83(1), 15–38. doi:10.1007/s11192-009-0051-9
Verma, S.; & Gustafsson, A. (2020). Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. Journal of Business Research, 118, 253-261. doi:10.1016/j.jbusres.2020.06.057
Wang, Q. (2018). A Bibliometric Model for Identifying Emerging Research Topics. Journal of the Association for Information Science and Technology, 69(2), 1-15. doi:10.48550/arXiv.1707.03599
Wang, Z., Porter, A., Wang, X., & Carley, S. (2018). An approach to identify emergent topics of technological convergence: A case study for 3D printing. Technological Forecasting and Social Change, 146, 723–732. doi:10.1016/j.techfore.2018.12.015
 Weismayer, C.; & Pezenka, I. (2017). Identifying emerging research fields: A longitudinal latent semantic keyword analysis. Scientometrics, 113(3), 1757–1785. doi:10.1007/s11192-017-2555-z
Wong S.; Mah, A.; Nordin, A.; et al. (2020). Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environmental Science and Pollution Research International, 27(8), 7757-7784. doi:10.1007/s11356-020-07933-y
Wu, F. S.; Shiu, C. C.; Lee, P. C.; Su, H. N. (2010). Integrated Methodologies for Mapping and Forecasting Science and Technology Trends: A Case of Etching Technology. Portland International Center for Management of Engineering and Technology.
Wu, Z.; Ren, Y. (2018). A bibliometric review of past trends and future prospects in urban heat island research from 1990 to 2017. Environmental Reviews, 27(2), 241-251. doi:10.1139/er-2018-0029
Xu, H.; Winnink, J.; Yue, Z.; Zhang, H.; Pang, H. (2021). Multidimensional Scientometric indicators for the detection of emerging research topics. Technological Forecasting and Social Change, 163(9), 1-23. doi:10.1016/j.techfore.2020.120490
Xu, S.; Hao, L.; An, X.; Pang, H.; Li, T. (2020).  Review on emerging research topics with key‑route main path analysis. Scientometrics 122, 607–624. doi:10.1007/s11192-019-03288-5
Xu, S.; Hao, L.; An, X.; Yang, G.; & Wang, F. (2019). Emerging research topics detection with multiple machine learning models. Journal of Informetrics, 13(4), 1-19. doi:10.1016/j.joi.2019.100983
Yeganeh Fallah, A. (2007). Identifying emerging trends in nanobiotechnology knowledge using text mining. Master's thesis. Tarbiat Modares University, Tehran, Iran. [In Persian]
Zare Benadkoki, M. (2010). Forecasting the research trend in industrial engineering with the help of neural networks. Master's thesis, Yazd University, Iran. [In Persian]
Zeng, R.; Xue, L. (2019). A Percolation Algorithm to Discover Emerging Research Topics. 15th International Conference on Intelligent Computing. doi:10.1007/978-3-030-26763-6_47
Zhang, G.; Chen, Y.; Li, G. (2020). The Evolution and Emerging Trends of Cloud Computing Adoption Research: Visual Analysis of CiteSpace Based on WOS Papers. SPML: 2020 3rd International Conference on Signal Processing and Machine Learning. doi:10.1145/3432291.3433641
Zhang, J.; Song, L.; Xu, L.; Fan, Y.; Wang, T.; Tian, W.; Ju, J.; Xu, H. (2021). Knowledge Domain and Emerging Trends in Ferroptosis Research: A Bibliometric and Knowledge-Map Analysis. Frontiers in Oncology, 11, 1-16. doi:10.3389/fonc.2021.686726
Zhang, Y.; Zhang, G.; Chen, H.; Porter, A. L.; Zhu, D.; Lua, J. (2016). Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research. Technological Forecasting & Social Change, 105, 179-191. doi:10.1016/j.techfore.2016.01.015
Zhi, W.; Ji, G. (2012). Constructed wetlands, 1991-2011: A review of research development, current trends, and future directions. Science of The Total Environment, 441, 19-27. 1 doi:0.1016/j.scitotenv.2012.09.064
Zhou, T.; Xu, Y.; Xu, W. (2020). Emerging research trends and foci of studies on the meniscus: A bibliometric analysis. Journal of orthopaedic surgery, 28(3), 1-7. doi: 10.1177/2309499020947286