Cluster Analysis of Knowledge Development in the Field of Knowledge Extraction in Service Industry

Document Type : Research Paper

Authors

1 PhD Candidate, Knowledge and Information Science-Knowledge Management, Management and Economics Faculty, Tarbiat Modares University, Tehran, Iran.

2 Full-Prof., Knowledge and Information Science-Knowledge Management, Management and Economics faculty, Tarbiat Modares University, Tehran, Iran .

3 Assistant Prof., Knowledge and Information Science-Knowledge Management, Management and Economics faculty, Tarbiat Mo-dares University, Tehran, Iran.

4 Associate Professor, Department of Computer Science, Faculty of Mathematics, Tarbiat Modares University, Tehran, Iran

Abstract

Purpose: Service industries are recognized as one of the largest sectors of the economy globally, and it has the most prominent role in the countries' economic growth. To create an essential change that represents a revolutionary change in the technology of a product or service, there is a need to acquire, extract and develop knowledge to achieve a competitive advantage. Therefore, this study aims to analyze the knowledge development clusters in the service industry's knowledge extraction field. In the knowledge management process, knowledge extraction is the main phase of knowledge acquisition. Knowledge acquisition is one of the important aspects of knowledge discovery in databases to help managers make timely decisions by extracting correct knowledge.
Methodology: Bibliometrics and scientific mapping techniques have been used in this applied research. Research data were collected from the Scopus database from 1986 to 2022. VOSviewer and Bibliometrix R were used to analyze and visualize data and scientific maps. Furthermore, to ensure the accuracy and validity of the results, Bibliometrix and Excel tools have been used to integrate data and remove duplicate data.
Findings: The research findings show the knowledge extraction application among 434 documents in 5 clusters of knowledge extraction, artificial intelligence, information retrieval, semantics, and forecasting. In the research, knowledge extraction and data mining are the most widely used words in a single cluster and have the most centrality and betweenness. Likewise, the bibliometric analysis of the data in The Multiple Correspondence Analysis (MCA) shows that the Internet, natural language processing, and machine learning are among the topics that are important next to the healthcare sector. This shows the importance of natural language and machine learning in extracting knowledge in healthcare services. Since 2006, the importance of knowledge extraction has received more attention. The co-occurrence of keywords shows that knowledge extraction is widely used with data mining, extraction, and artificial intelligence. The keywords of knowledge extraction and data mining in cluster 1, semantics, knowledge management, and information services in cluster 2, and information retrieval, internet, and human in cluster 3 have the highest centrality. The theme mapping shows that forecasting, multi-agent systems, and planning are themes with high density and low centrality, which are called niche themes. Semantics, web services, and knowledge-based systems are the main themes with low density and high centrality. Also, artificial intelligence, information management, and decision support systems are themes with low density and centrality, which are also known as emerging or declining themes. The forecasting cluster is located in the strategic knowledge cluster group. Information retrieval, knowledge extraction, and artificial intelligence are included in the cluster of practical knowledge. Semantics as a cluster including various experts and specialists such as domain experts, knowledge engineers, and programmers is in the collaborative cluster.
Conclusion: Knowledge extraction is an emerging interdisciplinary field in knowledge management and has a direct and significant impact on the country's economy. Knowledge development and integration of key issues in knowledge extraction are essential. According to the findings of this study, for the promotion and advancement of this process in the service industry, it is suggested to provide a strategic view in the use of metadata analysis of the context of activity and success of the service industry in knowledge extraction. Moreover, knowledge management as the primary discipline and domain can guarantee success in this process. The clusters identified in this study are also divided into three practical, strategic, and collaborative knowledge clusters. Moreover, the results of this research can help managers of organizations, especially their knowledge managers, to plan and make decisions in the field of service industries to facilitate optimal knowledge extraction and maintain competitive advantage.

Keywords


 
بیگدلو، ا. (1401)(زود آیند). ساختار فکری دانش در حوزه بازیابی اطلاعات: مطالعه هم‌واژگانی. پژوهش‌نامه علم‌سنجی،  https://doi.org/‌10.22070/rsci.2022.14569.1501
جواهری، م.، وکیلی مفرد، ح.، امیری، م.، خاصه، ع. (1400). ترسیم و تحلیل نقشه دانش حوزه پژوهش‌های زنان ‌و ‌زایمان با استفاده از تحلیل هم‌رخدادی واژگان. پژوهش‌نامه علم‌سنجی، 7(14)، 137-156. https://doi.org/ 10.22070/rsci.2020.5289.1359
دانش، ف. (1399). کشف و دیداری‌‌سازی الگوهای برجسته، روابط پنهان و گرایش‌‌های موضوعی سازمان‌دهی دانش. پژوهشنامه پردازش و مدیریت اطلاعات، ۳۶ (۲) :469-500. https://doi.org/10.35050/JIPM010.2020.008
سهرابی، ط.، و غفاری، س. (1398). شناسایی موضوعات پرکاربرد تولیدات علمی حوزه «ارتباطات علمی» با استفاده از روش تحلیل هم‌رخدادی واژگان. پژوهش‌نامه علم‌سنجی، 5(10)، 45-62. https://doi.org/10.22070/rsci.2019.3888.1246
محمودخانی، م. (1400). بررسی وضعیت تولیدات علمی و هم‌رخدادی واژگان کلیدی حوزه مالیات بر اساس مقالات نمایه‌شده در پایگاه وب آو ساینس. پژوهش‌نامه علم‌سنجی، 7(14)، 115-136. https://doi.org/ 10.22070/rsci.2020.5239.1355
 
Ahmed, E. F. I. (2018). Comparative Study Between Naive Bayes and REP Tree Algorithms for Eye Refractive Error [Unpublished Doctoral dissertation]. University of Science and Technology.
Alcayde-García, F., Salmerón-Manzano, E., Montero, M. A., Alcayde, A., & Manzano-Agugliaro, F. (2022). Power Transmission Lines: Worldwide Research Trends. Energies, 15(16), 5777.  https://doi.org/10.3390/en15165777
Alsharif, A. H., Md Salleh, N. Z., Baharun, R., & Rami Hashem E, A. (2021). Neuromarketing research in the last five years: A bibliometric analysis. Cogent Business & Management, 8(1), 1978620.  https://doi.org/10.1080/23311975.2021.1978620
Altowayan, A. A. (2019). Efficient Algorithm for Answering Fact-based Queries Using Relational Data Enriched by Context-Based Embeddings [Unpublished Doctoral dissertation]. Pace University New York. https://csis.pace.edu/~lixin/doc/phd-dissertation/dissertation-2019-Aziz%20Altowayan.pdf
Anugerah, A. R., Muttaqin, P. S., & Trinarningsih, W. (2022). Social network analysis in business and management research: A bibliometric analysis of the research trend and performance from 2001 to 2020. Heliyon, e09270.  https://doi.org/10.1016/j.heliyon.2022.e09270
Arboníes, A. L., & Moso, M. (2002). Basque Country: the knowledge cluster. Journal of knowledge management.  https://doi.org/10.1108/13673270210440857
Bajaj, A., Sharma, T., & Sangwan, O. P. (2020). Information Retrieval in Conjunction with Deep Learning. In Handbook of Research on Emerging Trends and Applications of Machine Learning, pp. 300-311. IGI Global.  https://doi.org/10.4018/978-1-5225-9643-1.ch014
Bigdeloo, E. (2022). Intellectual Structure of Knowledge in information retrieval: A Co-Word Analysis. Scientometrics Research Journal, (Published Online, 3 April), https://doi.org/10.22070/rsci.2022.14569.1501 [in Persian].
Bozdağ, H. C., Türkoğuz, S., & Gökler, İ. (2021). Bibliometric analysis of studies on the Flipped Classroom Model in biology teaching. JPBI (Jurnal Pendidikan Biologi Indonesia), 7(3), 275-287.  https://doi.org/10.22219/jpbi.v7i3.16540
Bueno, R. V., Zurera, M. R., Amores, M. P. J., Pita, R. G., & de la Mata Moya, D. (2009). Intelligent Radar Detectors. In Encyclopedia of Artificial Intelligence‌, 933-939. IGI Global.  https://doi.org/10.4018/978-1-59904-849-9.ch137
Cai, R., & Guo, J. (2021). Finance for the environment: A scientometrics analysis of green finance. Mathematics, 9(13), 1537.  https://doi.org/10.3390/math9131537
Caputo, A., & Kargina, M. (2022). A user-friendly method to merge Scopus and Web of Science data during bibliometric analysis. Journal of Marketing Analytics, 10(1), 82-88.‌ https://doi.org/10.1057/s41270-021-00142-7
Carranza, K. A. L. R., Manalili, J., Bugtai, N. T., & Baldovino, R. G. (2019). Expression tracking with OpenCV deep learning for a development of emotionally aware Chatbots. [In 2019 7th international conference on robot intelligence technology and applications (RiTA)], (November), 160-163. IEEE.  https://doi.org/10.1109/RITAPP.2019.8932852
Castagna, F., Centobelli, P., Cerchione, R., Esposito, E., Oropallo, E., & Passaro, R. (2020). Customer knowledge management in SMEs facing digital transformation. Sustainability, 12(9), 3899.  https://doi.org/10.3390/su12093899
Centobelli, P., Cerchione, R., Esposito, E., & Oropallo, E. (2021). "Surfing blockchain wave, or drowning? Shaping the future of distributed ledgers and decentralized technologies." Technological Forecasting and Social Change, Vol.165, 120463.  https://doi.org/10.1016/j.techfore.2020.120463
Chaudhuri, R., Chavan, G., Vadalkar, S., Vrontis, D., & Pereira, V. (2020). Two-decade bibliometric overview of publications in the Journal of Knowledge Management. Journal of Knowledge Management. https://doi.org/10.1108/JKM-07-2020-0571
Chen, G., & Xiao, L. (2016). Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods. Journal of Informetrics, 10 (1), 212-223. https://doi.org/https://doi.org/10.1016/j.joi.2016.01.006
Dalkir, K. (2005). Knowledge Management in Theory and Practice. Elsevier Publication. https://www.amazon.com/Knowledge-Management-Theory-Practice-Dalkir/dp/075067864X
Dalkir, K. (2013). Knowledge management in theory and practice. Routledge.‌ https://doi.org/10.4324/9780080547367
Danesh, F. (2020). Knowledge Organization Discovering & Visualizing Prominent Patterns, Hidden Relationships & Subjects Trends. Iranian Journal of Information Processing and Management, 36(2), 469-500. https://doi.org/10.35050/JIPM010.2020.008 [In Persian].
Deepa, R., & Vigneshwari, S. (2022). An effective automated ontology construction based on the agriculture domain. ETRI Journal.  https://doi.org/10.4218/etrij.2020-0439
Deshamukhya, P., & Bahan chakraBarty, J. (2020). Impact of service sector on economic growth: evidence from north east india. Indian Journal of Economics & Business, 19(1), 71-85. https://www.ashwinanokha.com/resources/ijeb%20v19-1-5.pdf
Dhaulta, N. (2022). Innovation Networks and Knowledge Clusters Accelerating Value Creation in the Middle East and North Africa. In Entrepreneurial Rise in the Middle East and North Africa: The Influence of Quadruple Helix on Technological Innovation. Emerald Publishing Limited.  https://doi.org/10.1108/978-1-80071-517-220221013
Di Franco, G. (2016). Multiple correspondence analysis: one only or several techniques? Quality & Quantity, 50(3), 1299-1315. https://doi.org/10.1007/s11135-015-0206-0
Donthu, N., Kumar, S., & Pattnaik, D. (2020). Forty-five years of journal of business research: a bibliometric analysis. Journal of Business Research, 109, 1-14.  https://doi.org/10.1016/j.jbusres.2019.10.039
Errahmani, M. B., Said, R. M., Habraoui, F., Kaddache, C., & Boukari, R. (2013). Statistical Approaches in Identifying Relationships in Disease Background Parameters using Multiple Correspondence Analysis: Case of Atopies in Relation to Asthma. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 70(1). https://doi.org/10.15835/buasvmcn-asb:70:1:9244
Esfahani, A. N., Moghaddam, N. B., Maleki, A., & Nazemi, A. (2021). The knowledge map of energy security. Energy Reports, 7, 3570-3589.  https://doi.org/10.1016/j.egyr.2021.06.001
Espuny, M., Motta Reis, J. S. D., Monteiro Diogo, G. M., Reis Campos, T. L., Mello Santos, V. H. D., Ferreira Costa, A. C., ... & Oliveira, O. J. D. (2021). COVID-19: The Importance of Artificial Intelligence and Digital Health During a Pandemic. [In ITNG 2021 18th International Conference on Information Technology-New Generations], pp. 27-32. Springer, Cham.‌ https://doi.org/10.1007/978-3-030-70416-2_4
Falagas, M.E., Pitsouni, E.I., Malietzis, G.A. and Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal, 22 (2), 338-342.  https://doi.org/10.1096/fj.07-9492LSF
Farooq, R. (2022). A review of knowledge management research in the past three decades: a bibliometric analysis. VINE Journal of Information and Knowledge Management Systems.  https://doi.org/10.1108/VJIKMS-08-2021-0169
Gaviria-Marin, M., Merigo, J. M., & Popa, S. (2018). Twenty years of the Journal of Knowledge Management: A bibliometric analysis. Journal of Knowledge Management.  https://doi.org/10.1108/JKM-10-2017-0497
Gestal, M., & Andrade, J. M. (2009). Evolutionary Approaches to Variable Selection. In Encyclopedia of Artificial Intelligence, 581-588. IGI Global.‌ https://doi.org/10.4018/978-1-59904-849-9.ch089
Ghosh, K., Nangi, S. R., Kanchugantla, Y., Rayapati, P. G., Bhowmick, P. K., & Goyal, P. (2021). Augmenting video lectures: Identifying off-topic concepts and linking to relevant video lecture segments. International Journal of Artificial Intelligence in Education, 1-31.  https://doi.org/10.1007/s40593-021-00257-z
Gorodetsky, V., & Yusupov, R. (2021). Artificial Intelligence at Present and Tomorrow. In Journal of Physics: [Conference Series], Vol. 1864, No. 1, May, p. 012002). IOP Publishing.  https://doi.org/10.1088/1742-6596/1864/1/012002
Habanabakize, T., & Mncayi, P. (2022). Modelling the effects of gross value added, foreign direct investment, labour productivity and producer price index on manufacturing employment. Journal of Contemporary Management, 19(1), 57-81.  https://doi.org/10.35683/jcm21028.137
Hao, T., Chen, X., Li, G., & Yan, J. (2018). A bibliometric analysis of text mining in medical research. Soft Computing, 22(23), 7875-7892.  https://doi.org/10.1007/s00500-018-3511-4
He, Q., Wang, T., Chan, A. P., Li, H., & Chen, Y. (2019). Identifying the gaps in project success research: A mixed bibliographic and bibliometric analysis. Engineering, Construction and Architectural Management.  https://doi.org/10.1108/ECAM-04-2018-0181
Hervie, D. M., Illés, C. B., Dunay, A., & Khalife, M. A. (2021). BIBLIOMETRIC ANALYSIS OF HUMAN RESOURCE MANAGEMENT (HRM) IN THE HOSPITALITY AND TOURISM INDUSTRY. Management (16487974), 37(1). https://doi.org/10.38104/vadyba.2021.1.06
Hu, Y., Yu, Z., Cheng, X., Luo, Y., & Wen, C. (2020). A bibliometric analysis and visualization of medical data mining research. Medicine, 99(22). https://doi.org/10.1097/MD.0000000000020338
Huang, C., Yang, C., Wang, S., Wu, W., Su, J., & Liang, C. (2020). Evolution of topics in education research: A systematic review using bibliometric analysis. Educational Review, 72(3), 281-297.  https://doi.org/10.1080/00131911.2019.1566212
Ibbou, S., & Cottrell, M. (1995). Multiple correspondence analysis of a crosstabulations matrix using the Kohonen algorithm. In ESANN (Vol. 99), (April). https://www.esann.org/sites/default/files/proceedings/legacy/es1995-109-S.pdf
Islam, M. R., Hossain, B. A., Imteaj, M. N., Akhter, S., Jogesh, H. S., & Mostafa, M. B. (2017). OnTraNetBD: A knowledgebase for the travel network in bangladesh. [In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)‌], (December‌), pp. 170-174). IEEE.  https://doi.org/10.1109/R10-HTC.2017.8288931
Ismail, M. I., Abrizah, A., & Samsuddin, S. F. (2021). Mapping the Knowledge Domains of Research Data Management: A Co-occurrence Analysis. [In Reimagining libraries for a post-pandemic world: Proceedings of the International 8th Conference on Libraries, Information and Society], ICoLIS 2021. https://umlib.um.edu.my/images/library%20publication/icolis/2021/
Jalal, S. K. (2019). Co-authorship and co-occurrences analysis using Bibliometrix R-package: a case study of India and Bangladesh. Annals of Library and Information Studies (ALIS), 66(2), 57-64.‌‌https://www.researchgate.net/publication/335395803_Co-authorship_and_co-occurrences_analysis_using_BibliometrixR_package_a_casestudy_of_India_and_Bangladesh
Javaheri, M., Vakilimofrad, H., Amiri, M., & Khasseh, A. A. (2021). Mapping Knowledge Structure of Obstetrics and Gynecology studies: A Co-Word Analysis. Scientometrics Research Journal, 7(2(,) Autumn & Winter)), 137-156. https://doi.org/10.22070/rsci.2020.5289.1359  [In Persian].
Julia, J., Afrianti, N., Ahmed Soomro, K., Supriyadi, T., Dolifah, D., Isrokatun, I., ... & Ningrum, D. (2020). Flipped classroom educational model (2010-2019): A bibliometric study. European Journal of Educational Research, 9(4), 1377-1392. https://doi.org/10.12973/eu-jer.9.4.1377
Kamalski, J., & Kirby, A. (2012). Bibliometrics and urban knowledge transfer. Cities, 29, S3-S8.  https://doi.org/10.1016/j.cities.2012.06.012
Kokol, P., Saranto, K., & Vošner, H. B. (2018). eHealth and health informatics competences: A systemic analysis of literature production based on bibliometrics. Kybernetes.
https://www.emerald.com/insight/content/doi/10.1108/K-09-2017-0338/full/html
Kongsomrarn, C., Sangkaho, C., Promlar, A., Phatthanaaoran, P., & Arreeras, T. (2022, March). A Review: Female’s Career Advancement to An Executive Position in The Service Industry. [In 2022 International Conference on Decision Aid Sciences and Applications (DASA)], 1531-1536. IEEE. https://doi.org/10.1109/DASA54658.2022.9765196
Kügler, P., Marian, M., Dorsch, R., Schleich, B., & Wartzack, S. (2022). A Semantic Annotation Pipeline towards the Generation of Knowledge Graphs in Tribology. Lubricants 2022, 10, 18. Machine Learning in Tribology, 87.   https://doi.org/10.3390/lubricants10020018
Kushairi, N., & Ahmi, A. (2021). Flipped classroom in the second decade of the Millenia: A Bibliometrics analysis with Lotka’s law. Education and information technologies, 26(4), 4401-4431. https://link.springer.com/article/10.1007/s10639-021-10457-8
Landherr, A., Friedl, B., & Heidemann, J. (2010). A critical review of centrality measures in social networks. Business & Information Systems Engineering, 2(6), 371-385.‌https://doi.org/10.1007/s12599-010-0127-3
Landoni, M. (2020). Reconsidering Innovation in State-Owned Enterprises. In the Routledge Handbook of State-Owned Enterprises, 605-617. Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781351042543-34/reconsidering-innovation-state-owned-enterprises-matteo-landoni  
Larbani, M., & Yu, P. L. (2020). Empowering data mining sciences by habitual domains theory, part I: The concept of wonderful solution. Annals of Data Science, 7(3), 373-397. https://link.springer.com/article/10.1007/s40745-020-00290-0  
Lawry, T. (2020). ARTIFICIAL INTELLIGENCE IN HEALTH: The Future Is Not What It Used to Be. Scitech Lawyer, 17(1), 4-8. https://doi.org/10.4324/9780429321214-3
Lee, W. C., & Voon, B. H. (2022). SERVICES SECTOR IN SARAWAK: CHALLENGES AND WAY FORWARD. International Journal of Industrial Management, 13(1), 451-457. https://doi.org/10.15282/ijim.13.1.2022.7358
Lethebe, B. C. (2018). Using machine learning methods to improve chronic disease case definitions in primary care electronic medical records [Unpublished master dissertation]. Cumming School of Medicine. https://prism.ucalgary.ca/server/api/core/bitstreams/4d2c0719-2d3a-424b-b0e9-082e6f8b15fa/content
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., ... & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of clinical epidemiology, 62(10), e1-e34. http://dx.doi.org/10.1016/j.jclinepi.2009.06.006
Liu, B., Fan, Y., Xue, B., Wang, T., & Chao, Q. (2022). Feature extraction and classification of climate change risks: a bibliometric analysis. Environmental Monitoring and Assessment, 194(7), 1-41. https://link.springer.com/content/pdf/10.1007/s10661-022-10074-z.pdf
Loslever, P., & Bouilland, S. (1999). Marriage of fuzzy sets and multiple correspondence analysis: Examples with subjective interval data and biomedical signals. Fuzzy sets and systems, 107(3), 255-275. https://doi.org/10.1016/S0165-0114(97)00317-5
Lundin, M., & Eriksson, S. (2016). Artificial intelligence in Japan (R&D, market and industry analysis). EU-JAPAN Centre for Industrial Cooperation. https://www.eu-japan.eu/sites/default/files/artificial_intelligence_in_japan.pdf
Maçaira, P. M., Thomé, A. M. T., Oliveira, F. L. C., & Ferrer, A. L. C. (2018). Time series analysis with explanatory variables: A systematic literature review. Environmental Modelling & Software, 107, 199-209. http://dx.doi.org/10.1016/j.envsoft.2018.06.004
Magesh, V. S., & Franco, T. G. (2016). Improving Indian Healthcare Using Data Mining. [‌In Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Kuala Lumpur], Malaysia, March 8-10, 598-607. https://ieomsociety.org/ieom_2016/pdfs/172.pdf
Mahmoudkhani, M. (2021). Investigating the status of scientific products and the co-occurrence of keywords in the field of tax Based on Web of Science Indexed Papers. Scientometrics Research Journal, 7(2(,) Autumn & Winter), 115-136. https://doi.org/10.22070/rsci.2020.5239.1355 [In Persian].
Manu, V. (2019). A Study on the Growth and Performance of Service Sector in Kerala-With Special Refeernce to Kollam. Think India Journal, 22(4), 61-76. https://www.researchgate.net/publication/336924664_A_Study_On_The_Growth_And_Performance_Of_Service_Sector_In_Kerala-With_Special_Refeernce_To_Kollam
 
Melo, P. N., Martins, A., & Pereira, M. (2020). The relationship between Leadership and Accountability: A review and synthesis of the research. Journal of Entrepreneurship Education, 23 (6), p.10. https://www.researchgate.net/publication/344798181_THE_RELATIONSHIP_BETWEEN_LEADERSHIP_AND_ACCOUNTABILITY_A_REVIEW_AND_SYNTHESIS_OF_THE_RESEARCH
Nasir, A., Shaukat, K., Hameed, I. A., Luo, S., Alam, T. M., & Iqbal, F. (2020). A bibliometric analysis of corona pandemic in social sciences: a review of influential aspects and conceptual structure. Ieee Access, 8, 133377-133402. http://dx.doi.org/10.1016/j.dib.2020.106520
Nguyen, M. H., Pham, T. H., Ho, M. T., Nguyen, H. T. T., & Vuong, Q. H. (2021). On the social and conceptual structure of the 50-year research landscape in entrepreneurial finance. SN Business & Economics, 1(1), 1-29. https://doi.org/10.1007/s43546-020-00002-z
Nohuddin, P., Zainol, Z., Lee, A. S. H., Nordin, I., & Yusoff, Z. (2018). A case study in knowledge acquisition for logistic cargo distribution data mining framework. International Journal of Advanced and Applied Sciences, 5(1), 8-14. https://doi.org/10.21833/ijaas.2018.01.002
Nováky, E., Varga, V. R., & Kőszegi, M. K. (2001). FUTURES STUDIES IN THE EUROPEAN EX SOCIALIST COUNTRIES. Budapest: Futures Studies Centre, Budapest University of Economic Sciences and Public Administration. https://vmek.oszk.hu/04000/04011/04011.pdf
Nuryakin, Widayanti, R., Damayanti, R., & Susanto. (2021). The importance of market information accessibility to enhancing SMEs Indonesian superior financial performance. International Journal of Business Innovation and Research, 25(1), 1-18.‌ https://doi.org/10.1504/IJBIR.2021.115010
Omotayo, T., Moghayedi, A., Awuzie, B., & Ajayi, S. (2021). Infrastructure elements for smart campuses: a bibliometric analysis. Sustainability, 13(14), 7960.   http://dx.doi.org/10.3390/su13147960
Özen Çınar, İ. (2020). Bibliometric analysis of breast cancer research in the period 2009–2018. International Journal of Nursing Practice, 26(3), e12845. https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijn.12845
Perannagari, K. T., & Chakrabarti, S. (2020). Analysis of the literature on political marketing using a bibliometric approach. Journal of Public Affairs, 20 (1).  https://doi.org/ 10.1002/pa.2019
Purnomo, A., Kumalasari, R. D., Afia, N., Septianto, A., & Wiradimadja, R. D. D. (2021). Small Medium Enterprises in Indonesia: A Retrospective of the Research Journey. [Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management Surakarta], Indonesia, September 1-14. https://ieomsociety.org/proceedings/2021indonesia/441.pdf
Purnomo, A., Rosyidah, E., Firdaus, M., Asitah, N., & Septianto, A. (2020, August). Data science publication: thirty-six years' lesson of scientometric review. [In 2020 International Conference on Information Management and Technology (ICIMTech)], 893-898. IEEE. https://doi.org/ 10.1109/ICIMTech50083.2020.9211192
Purwaningrum, F. (2014). Knowledge governance in an industrial cluster: The collaboration between academia-industry-government in Indonesia (Vol. 27). LIT Verlag Münster.  https://www.researchgate.net/publication/263504981_Knowledge_Governance_in_an_Industrial_Cluster_The_Collaboration_between_Academia-Industry-Government_in_Indonesia
Qamar, U., & Raza, M. S. (2020). Text Mining. In Data Science Concepts and Techniques with Applications, 133-151, Springer, Singapore.  https://doi.org/10.1007/978-981-15-6133-7_7
Radanliev, P., De Roure, D., Nicolescu, R., Huth, M., & Santos, O. (2022). Digital twins: artificial intelligence and the IoT cyber-physical systems in industry 4.0. International Journal of Intelligent Robotics and Applications, 6(1), 171-185. ‌https://doi.org/10.1007/s41315-021-00180-5
Ramadani, V., Agarwal, S., Caputo, A., Agrawal, V., & Dixit, J. K. (2022). Sustainable competencies of social entrepreneurship for sustainable development: Exploratory analysis from a developing economy. Business Strategy and the Environment. https://doi.org/10.1002/bse.3093
Richards, R. J., Prybutok, V. R., & Ryan, S. D. (2012). Electronic medical records: Tools for competitive advantage. International Journal of Quality and Service Sciences.‌ https://doi.org/10.1108/17566691211232873
Sabidussi, G. (1966). The centrality of a graph. Psychometrika. 31 (4), 581–603. https://doi.org/10.1007/BF02289527
Sharon, C. I., & Suma, V. (2022). Predictive Analytics in IT Service Management (ITSM). Data Mining and Machine Learning Applications, 175-193.  https://doi.org/10.1002/9781119792529.ch7
Sohrabi, T., & Ghaffari, S. (2019). Analysis of Articles in the Field of Scientific Communication Using the Lexical Co-analysis Method. Scientometrics Research Journal, 5 (Issue 2, Autumn & Winter), 45-62. https://doi.org/10.22070/rsci.2019.3888.1246 [In Persian].
Sousa, A., Madeira, C., Rodrigues, P., & Martins, C. (2022). Smart and Sustainable Tourism Destinations: A Bibliometric Analysis. In Optimizing Digital Solutions for Hyper-Personalization in Tourism and Hospitality‌, 107-130. IGI Global.  https://doi.org/10.4018/978-1-7998-8306-7.ch006
Subramaniam, L. V., & Roy, S. (2009). Analytics for Noisy Unstructured Text Data II. In Encyclopedia of Artificial Intelligence, 105-109‌. IGI Global.  https://doi.org/10.4018/978-1-59904-849-9.ch016
Sunhare, P., Chowdhary, R. R., & Chattopadhyay, M. K. (2020). Internet of things and data mining: An application-oriented survey. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2020.07.002
Sureephong, P., Chakpitak, N., Ouzrout, Y., Neubert, G., & Bouras, A. (2006). Knowledge management system for cluster development in small and medium enterprises. [In International Conference on Software, Knowledge, Information Management and Applications (SKIMA)], (December), 15-20. N/A. https://www.researchgate.net/publication/5085571_Knowledge_Management_System_for_Cluster_Development_in_Small_and_Medium_Enterprises
Thomas, T., & Mervin, R. (2021). Intelligent Agent System Using Medicine Ontology. Semantic Web for Effective Healthcare, 139-157.  https://doi.org/10.1002/9781119764175.ch6
Tiwari, M., Dixit, R., & Kesharwani, A. (2017). Data Mining Principles, Process Model and Applications. Educreation Publishing.  https://books.google.com/books/about/Data_Mining_Principles_Process_Model_and.html?id=74UwDwAAQBAJ
Tripathi, M., Kumar, S., Sonker, S. K., & Babbar, P. (2018). Occurrence of author keywords and keywords plus in social sciences and humanities research: A preliminary study. COLLNET Journal of Scientometrics and Information Management, 12(2), 215-232. https://doi.org/10.1080/09737766.2018.1436951
Usak, M., Sinan, S., & Sinan, O. (2022). Science Maps and Bibliometric Analysis on Hygiene Education During 2012-2021. Journal of Baltic Science Education, 21(2), 288. https://doi.org/10.33225/jbse/22.21.288
Van Eck, N. J., & Waltman, L. (2013). VOSviewer manual. Leiden: Univeristeit Leiden, 1(1), 1-53.
Vanaja, A., & Yella, V. R. (2022). Evolution of machine learning in biosciences: A bibliometric network analysis. Journal of Applied Biology & Biotechnology.https://doi.org/10.7324/JABB.2022.100505
Vieira, E.S. and Gomes, J.A.N.F. (2009). A comparison of Scopus and web of science for a typical university. Scientometrics, 81 (2), 587-600.  https://doi.org/10.1007/s11192-009-2178-0
Vujanovic, N. (2021). Technological Trends in the Manufacturing and Service Sectors. The Case of Montenegro. The South East European Journal of Economics and Business, 16(1), 120-133.  https://doi.org/10.2478/jeb-2021-0010
Wadesango, N., Charity, M., Blessing, M., & Haufiku, H. (2020). The effects of corporate governance on financial performance of commercial banks in a turbulent economic environment. Acta Universitatis Danubius. Œconomica, 16(4). https://dj.univ-danubius.ro/index.php/AUDOE/article/view/313/753
Wang, X. X., Xu, Z. S., & Dzitac, I. (2019). Bibliometric Analysis on Research Trends of International Journal of Computers Communications & Control. International Journal of Computers, Communications & Control, 14(5).  https://doi.org/10.15837/ijccc.2019.5.3685
Wang, Y. (2022). Research on the Labor Education Practice Project of Normal Students Under the Background of Artificial Intelligence. In Artificial Intelligence in China, 261-267. Springer, Singapore.   Research on the Labor Education Practice Project of Normal Students Under the Background of Artificial Intelligence | SpringerLink
Xiao, Z., Qin, Y., Xu, Z., Antucheviciene, J., & Zavadskas, E. K. (2022). The Journal Buildings: A Bibliometric Analysis (2011–2021). Buildings, 12(1), 37. https://doi.org/ 10.3390/buildings12010037
Yang, D., Zhao, W. G., Du, J., & Yang, Y. (2022). Approaching Artificial Intelligence in business and economics research: a bibliometric panorama (1966–2020). Technology Analysis & Strategic Management, 1-16.  https://doi.org/10.1080/09537325.2022.2043268
Yang, S., Yuan, Q., & Dong, J. (2020). Are Scientometrics, informetrics, and bibliometrics different? Data Science and Informetrics, 1(01). https://www.scirp.org/html/3-2950004_103597.htm
Yao, X., Hu, Y., Zou, X., & Qu, W. (2022). Research disciplinary interactions on scientific collaboration network in photocatalytic hydrogen evolution: Characteristics and dynamics. Plos one, 17(4), e0266404.  https://doi.org/10.1371/journal.pone.0266404
Yildirim, G., Rahman, A., & Singh, V. P. (2022). A Bibliometric analysis of drought indices, risk, and forecast as components of drought early warning systems. Water, 14(2), 253.‌ https://doi.org/10.3390/w14020253
Yu, D., Xu, Z., & Wang, X. (2020). Bibliometric analysis of support vector machines research trend: a case study in China. International Journal of Machine Learning and Cybernetics, 11(3), 715-728.  https://doi.org/10.1007/s13042-019-01028-y
Zarka, M., Ben Ammar, A., & Alimi, A. M. (2016). Fuzzy reasoning framework to improve semantic video interpretation. Multimedia Tools and Applications, 75(10), 5719-5750.  https://doi.org/10.1007/s11042-015-2537-1