Evolution, Growth, and Maturity of the Thematic Network in the field of Citation Bias

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Information Science, Faculty of Education and Psychology, Alzahra University, Tehran, Iran.

2 Postgraduate Student in Information Science and Knowledge Studies, Department of Information Science, Faculty of Education and Psychology, Alzahra University, Tehran, Iran.

3 Adjunct Professor, Department of Information Science, Faculty of Education and Psychology, Alzahra University, Tehran, Iran.

Abstract

purpose: The research aimed to map and analyze the co-word network in the field of citation bias, as well as to investigate the evolution, growth, and maturity of thematic clusters within this domain. By employing the co-occurrence technique and thematic cluster analysis, the study identifies topic clusters and reveal the intellectual structure of the field and provide valuable insights into the development and maturation of these topics. The findings not only highlight thematic gaps and prevent redundant studies but also elucidate fundamental trends, primary topics, and popular themes within citation bias research. These analyses provide a valuable perspective for evaluating and enhancing research activities in this field. Furthermore, examining the evolution of the topic network can reveal the advancements and emerging trends within the field, as well as how the relationships between topics change over time. Understanding the growth patterns of the thematic network can enhance our comprehension of the mechanisms underlying its connections and links. Similarly, analyzing the maturity of the thematic network can provide valuable insights into how we can leverage this network to identify current trends and predict future developments. By integrating the dimensions of evolution, growth, and maturity within the citation bias topic network, this study deepens our understanding of the field and improves our ability to classify and interpret thematic clusters effectively.
Methodology: This applied research employed a co-occurrence technique for analyzing words, combined with a scientometric approach. The research community encompasses all keywords extracted from documents indexed in the English language within the Web of Science (WoS) database from 1965 to 2024. A database search was performed using a researcher-developed query that included significant words and phrases pertinent to the field of citation bias. Finally, 9,739 documents were retrieved. Additionally, to visually represent the intellectual structure of this field, VOSviewer (a co-occurrence clustering tool) was employed. Furthermore, the R programming language and BiblioShiny, the web based interface of the Bibliometrix
library, were utilized to create various maps. The strategic diagram (topic map), Sankey diagram (topic evolution), and Multiple Correspondence Analysis (MCA) were utilized to evaluate the maturity and evolution of the clusters.
Findings: The highest frequency of scientific publications is associated with the subject categories of 'general internal medicine' and 'library science and information science.' The United States leads in scientific research output, followed by England, China, Canada, and Australia. The number of published documents has steadily increased from 2016 to 2022, with Studies published in 2022 holding greater significance within the network and encompassing more prominent and relevant topics in the field. From 1965 to 2012, dominant themes included ‘citation analysis’ and ‘systematic review’. Since 2013, the topic of ‘female’ emerged, reflecting growing attention to gender inequality in science. From 2018 to 2022, new trends have emerged, highlighting themes such as machine learning and bibliometrics, which underscore the influence of new technologies on citation analysis and bias assessment. The annual growth rate of scientific production is 11.55% indicating a consistent yearly increase in the number of articles. Additionally, the average number of citations per article is 35.57, demonstrating the impact of research in this field. The co-authorship rate is 4.44, with international co-authorship accounting for 29.35% of collaborations. The results of the factor analysis diagram, based on the Multiple Correspondence Analysis (MCA), reveal that themes such as ‘machine learning’, ‘bias’, ‘publication bias’, ‘citation’, ‘impact factor’, ‘research evaluation’, ‘network analysis’, ‘Bibliometric analysis’ have received significant attention in recent years within the field of citation bias.
Conclusion: The clusters identified through the co-occurrence analysis are labeled as follows: ‘Citation Bias and Gender Inequality,’ ‘Citation Analysis through Bibliometric Analysis and Visualization,’ ‘Citation Metrics and Bias,’ ‘Trend Analysis through Citation-Based Databases,’ ‘Investigation of Citation Bias through Systematic Review and Meta-Analysis,’ ‘Analysis of Citation Bias through Machine Learning and Artificial Intelligence,’ and ‘Gender Disparities in Citation Bias.’ Among these, the clusters related to 'bibliometrics,' 'citation analysis,' 'bibliographic analysis,' 'citation,' and 'CiteSpace software' are central to the study. However, they remain immature and underdeveloped, as evidenced by their position in the fourth quadrant of the Strategic Diagram (SD). Clusters situated in the second quadrant of the SD, such as ‘female’, ‘meta-analysis’, and ‘systematic review’, exhibit strong internal relationships and a high level of maturity, as indicated by their low centrality and high density. These clusters are not central, but are well-developed and somewhat isolated within the field of citation bias. Notably, no clusters are positioned in the first and third quadrants of the SD, indicating the absence of mature, central, or emerging clusters in this field.

Keywords

Main Subjects


 
احمدی، ح.، و عصاره، ف. (1396). مروری بر کارکردهای تحلیل هم‌واژگانی. مطالعات کتابداری و سازماندهی اطلاعات، 28 (1)، 145-125. https://nastinfo.nlai.ir/article_1132.html
زنگنه نژاد، ن.، حاجی حیدری، ن.، و صالحی، م. (1396). تحلیل شبکه روابط میان تئوری‌ها و پژوهش‌های سیستم‌های اطلاعاتی. مدیریت اطلاعات، 3(2)، 27-50. https://www.aimj.ir/article_68829.html
حسینی، ا.، غائبی، ا.، و برادر، ر. (1400). کتاب‌سنجی و نگاشت هم‌رخدادی واژگان در حوزه داده‌های پیوندی. پژوهش‌نامه علم‌سنجی. 7(13)، 91-116.  https://doi.org/10.22070/rsci.2020.4904.1333
حیدری، غ.، زوارقی، ر.، مختارپور، ر.، و خاصه، ع. ا. (1397). ساختار فکری علم اطلاعات و دانش‌شناسی: ازنظر «دیداری سازی حوزه دانش». نشریه مطالعات کتابداری و سازماندهی اطلاعات، 29(3)، 39-60.
خرمی مارکانی، ع.، یغمایی، ف.، و حبیب زاده، ح. (1389). خطاهای پژوهشی در مطالعات علوم پزشکی و نحوه کنترل آن‌ها. مجله پرستاری و مامایی، 8(3)، 175-182. http://unmf.umsu.ac.ir/article-1-217-fa.html
خلیلی جعفرآباد، ا. (1396). بررسی تغییرات حوزه تحقیقاتی کیفیت داده با استفاده از تحلیل هم‌رخدادی کلمات کلیدی. مدیریت اطلاعات، 3(2)، 121-138. https://www.aimj.ir/article_69410.html
سالمی، ن.، و کوشا، ک. (1392). مقایسه تحلیل هم‌استنادی و تحلیل هم‌واژگانی در ترسیم نقشه کتابشناختی (مطالعه موردی: دانشگاه تهران). پژوهش‌نامه پردازش و مدیریت اطلاعات، 29(1)، 253-266.
سلطانی زرندی، ز.، نگهبان، م. ب.، و مکی زاده، ف. (1395). تحلیل هم‌واژگانی مقالات فارسی حوزه کشاورزی کرمان در نمایه استنادی علوم ایران با رویکرد ترسیم نقشه علمی. مدیریت اطلاعات، 2(1)، 74-96.
سهیلی، ف.، خاصه، ع. ا.، و کرانیان، پ. (1398). ترسیم ساختار فکری حوزه علم اطلاعات و دانش‌شناسی ایران بر اساس تحلیل هم‌رخدادی واژگان. پژوهش‌نامه پردازش و مدیریت اطلاعات، 34(4)، 1905-1938.
سهیلی، ف.، شعبانی، ع.، و خاصه، ع. ا. (1394). ساختار فکری دانش در حوزۀ رفتار اطلاعاتی: مطالعۀ هم‌واژگانی. تعامل انسان و اطلاعات. ۲(۴)، 21-36. http://hii.khu.ac.ir/article-1-2446-fa.html
صدیقی، م. (1393). بررسی کاربرد روش تحلیل هم­رخدادی واژگان در ترسیم ساختار حوزه­های علمی (مطالعه موردی: حوزه اطلاع­سنجی). پژوهش‌نامه پردازش و مدیریت اطلاعات، 30(2)، 373-396.
عصاره، ف.، سهیلی، ف.، و منصوری، ع. (۱۳۹3). علم‌سنجی و دیداری سازی اطلاعات. اصفهان، دانشگاه اصفهان.https://press.ui.ac.ir/book_300.html
علیپور حافظی، م.، رمضانی، ه.، و مومنی، ع. (1396). ترسیم نقشه دانش حوزه کتابخانه‌های دیجیتالی در ایران: تحلیل هم‌رخدادی واژگان. پژوهش‌نامه پردازش و مدیریت اطلاعات، 33(2)، 453-488.
محمدی، م.، شیرانی، ف.، و صادقی، م. (1397). انواع تورش‌ها در مطالعات کار آزمایی بالینی: یک مطالعه مروری. مجله پرستاری و مامای، 16(4)، 273-285. http://unmf.umsu.ac.ir/article-1-3380-fa.html
مصطفوی، ا.، عصاره، ف.، و توکلی زاده راوری، م. (1397). شناسایی ساختار محتوایی مطالعات علم اطلاعات و دانش‌شناسی بر اساس واژگان و مفاهیم مقالات آن در پایگاه اطلاعاتی وب‌آوساینس (2009-2013). پژوهش‌نامه پردازش و مدیریت اطلاعات، 33(3)، 1271-1300.
Abramo, G., D'Angelo, C. A., Grilli, L. (2021). The effects of citation-based research evaluation schemes on self-citation behavior. Journal of Informetrics, 15(4), 101204. https://doi.org/10.1016/j.joi.2021.101204
Ahmadi, H., & Osareh, F. (2017). Co-word analysis Concept, Definition and Application. Librarianship and Information Organization Studies (Journal of National Studies on Librarianship and Information Organization), 28(1), 125-145.
Ebrahim, N., Salehi, H., Embi, M., Tanha, F., Gholizadeh, H., & Motahar, S. (2014). Visibility and citation impact. International Education Studies, 7(4), 120-125.
Alipour-Hafezi, M., Ramezani, H., & Momeni, E. (2018). Knowledge map of digital libraries in Iran: a co-word analysis. Iranian Journal of Information Processing and Management33(2), 453-488. https://jipm.irandoc.ac.ir/article_699445.html?lang=en
      [In Persian].
Alkadi, L., Haq, I. U., Allhaidan, W., Almusa, J., & Alshammari, A. (2024). Gender Variation, subject dispersion and citation impact in dental research: A bibliometric analysis of publications from 2009–2021. The Saudi Dental Journal36(1), 112-116.
Andersen, J. P., Schneider, J. W., Jagsi, R., & Nielsen, M. W. (2019). Meta-research: Gender variations in citation distributions in medicine are very small and due to self-citation and journal prestige. eLife, 8, e45374. https://doi.org/10.7554/eLife.45374
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Bornmann, L., & Daniel, H. D. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of documentation64(1), 45-80.
Brusco, M., Steinley, D., & Watts, A. L. (2024). A comparison of spectral clustering and the walktrap algorithm for community detection in network psychometrics. Psychological Methods, 29(4), 704-722. https://doi.org/10.1037/met0000509
Callon, M., Law, J., & Rip, A. (Eds.) (1986). Mapping the dynamics of science and technology: Sociology of science in the real world. Springer. https://doi.org/10.1007/978-1-349-07408-2
Chatterjee, P., & Werner, R. M. (2021). Gender disparity in citations in high-impact journal articles. JAMA Network Open4(7), e2114509-e2114509.
https://jamanetwork.com/journals/jamanetworkopen/articlepdf/2781617/chatterjee_2021_oi_210439_1629473414.38917.pdf
Cislak, A., Formanowicz, M., & Saguy, T. (2018). Bias against research on gender bias. Scientometrics, 115(1), 189–200. https://doi.org/10.1007/s11192-018-2667-0
Clarivate Analytics (2024). Web of Science Core Collection: Search Tips. Retrieved June 2024. https://ufh.za.libguides.com/c.php?g=979339&p=7081735
Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X., & Zhai, C. (2014). Content‐based citation analysis: The next generation of citation analysis. Journal of the association for information science and technology65(9), 1820-1833. https://doi.org/10.1002/asi.23256
Dion, M. L., Sumner, J. L., & Mitchell, S. M. (2018). Gendered citation patterns across political science and social science methodology fields. Political Analysis, 26(3), 312–327.
Duyx, B., Urlings, M. J. E., Swaen, G. M. H., Bouter, L. M., & Zeegers, M. P. (2017). Scientific citations favor positive results: A systematic review and meta-analysis. Journal of Clinical Epidemiology, 88, 92–101. https://doi.org/10.1016/j.jclinepi.2017.06.002
Dworkin, J. D., Linn, K. A., Teich, E. G., Zurn, P., Shinohara, R. T., & Bassett, D. S. (2020). The extent and drivers of gender imbalance in neuroscience reference lists. Nature Neuroscience, 23(8), 918–926. https://doi.org/10.1038/s41593-020-0658-y
Fister Jr, I., Fister, I., & Perc, M. (2016). Toward the discovery of citation cartels in citation networks. Frontiers in Physics, 4(49), 1-5. https://doi.org/10.3389/fphy.2016.00049
Fulvio, J. M., Akinnola, I., & Postle, B. R. (2021). Gender (im)balance in citation practices in cognitive neuroscience. Journal of Cognitive Neuroscience, 33(1), 3–7.
Gøtzsche, P.C. (2022). Citation bias: questionable research practice or scientific misconduct? Jou nal of the Royal Society of Medicine, 115(1), 31-35.
Greenacre, M., & Blasius, J. (2006). Multiple correspondence analysis and related methods. Chapman and Hall/CRC. https://doi.org/10.1201/9781420011319
Haidari, G., Zavaraqi, R., Mokhtarpour, R., & Khasseh, A. A. (2018). Intellectual structure of library and information science from the perspective of. Librarianship and Information Organization Studies29(3), 39-60. https://www.sid.ir/paper/224334/en [In Persian].
Hosseini, E., Ghaebi, A., & Baradar, R. (2021). Bibliometrics and Mapping of Co-words in the Field of Linked Data. Scientometrics Research Journal, 7(1), 91-116.
      https://doi.org/10.22070/rsci.2020.4904.1333 [In Persian].
Hu, C. P., Hu, J. M., Deng, S. L., & Liu, Y. (2013). A co-word analysis of library and information science in China. Scientometrics, 97(2), 369-382. https://doi.org/10.1007/s11192-013-1076-7
Jannot, A. S., Agoritsas, T., Gayet-Ageron, A., & Perneger, T. V. (2013). Citation bias favoring statistically significant studies was present in medical research. Journal of clinical epidemiology, 66(3), 296–301. https://doi.org/10.1016/j.jclinepi.2012.09.015
Joshi, P. B., & Pandey, M. (2024). Deception Through Manipulated Citations and References as a Growing Problem in Scientific Publishing. In Scientific Publishing Ecosystem: An Author-Editor-Reviewer Axis (pp. 285-306). Singapore: Springer Nature Singapore.  
Khalilijafarabad, A. (2018). Analyzing the Evolution of Data Quality Research Area Using Co-Word Analysis. Iranian Journal of Information Management3(2), 121-138.
      https://www.aimj.ir/article_69410.html?lang=en [In Persian].
Khasseh, A. A., Soheili, F., Sharif Moghaddam, H., & Chelak, A. M. (2017). Intellectual structure of knowledge in iMetrics: A co-word analysis. Information Processing & Management, 53(3), 705-720. https://doi.org/10.1016/j.ipm.2017.02.001
Khorami Markaney, A., Yagmayee, F., & Habibzadeh, H. (2010). Research error in medical sciences studies and their control strategies. Nursing and Midwifery Journal, 8(3), 175-182. http://unmf.umsu.ac.ir/article-1-217-fa.html [In Persian].
King, J. (1987). A review of bibliometric and other science indicators and their role in research evaluation.  Journal of information science13(5), 261-276.
Kivimäki, M., Batty, G. D., Kawachi, I., Virtanen, M., Singh-Manoux, A., & Brunner, E. J. (2014). Don't let the truth get in the way of a good story: an illustration of citation bias in epidemiologic research. American. journal of epidemiology, 180(4), 446–448.
Larivière, V., Archambault, É., Gingras, Y., & Vignola-Gagné, É. (2006). The place of serials in referencing practices: Comparing natural sciences and engineering with social sciences and humanities. Journal of the American Society for Information Science and Technology, 57(8), 997–1004. https://doi.org/10.1002/asi.20349
Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science. Nature, 504(7479), 211–213. https://doi.org/10.1038/504211a
Lee, W. H. (2008). How to identify emerging research fields using scientometrics: An example in the field of Information Security. Scientometrics, 76(3), 503–525.
Liu, F., Rahwan, T., & AlShebli, B. (2023). Non-White scientists appear on fewer editorial boards, spend more time under review, and receive fewer citations. Proceedings of the National Academy of Sciences, 120(13), e2215324120.
Llorens, A., Tzovara, A., Bellier, L., Bhaya-Grossman, I., Bidet-Caulet, A., Chang, W. K., ... & Dronkers, N. F. (2021). Gender bias in academia: A lifetime problem that needs solutions. Neuron, 109(13), 2047–2074. https://doi.org/10.1016/j.neuron.2021.06.002
Lyu, H., Bu, Y., Zhao, Z., Zhang, J., & Li, J. (2022). Citation bias in measuring knowledge flow: Evidence from the Web of Science at the discipline level. Journal of Informetrics, 16(4), 101338. https://doi.org/10.1016/j.joi.2022.101338
Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63.
Mirnezami, S. R., Beaudry, C., & Larivière, V. (2016). What determines researchers’ scientific impact? A case study of Quebec researchers. Science & Public Policy, 43(2), 262–274. https://doi.org/10.1093/scipol/scv038
Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics, 4(3), 265-277. https://doi.org/10.1016/j.joi.2010.01.002
Mohammadi, E., & Thelwall, M. (2014). Mendeley readership altmetrics for the social sciences and humanities: Research evaluation and knowledge flows. Journal of the Association for Information Science and Technology, 65(8), 1627–1638. https://doi.org/10.1002/asi.23071
Mohammadi, M., Shirani, F., & Sadeghi, M. (2018). Bias in the Clinical Trials: A Review Article. Nursing and Midwifery Journal, 16(4), 273-285.
Mott, C., & Cockayne, D. (2017). Citation matters: Mobilizing the politics of citation toward a practice of ‘conscientious engagement.’ Gender, Place, & Culture: A Journal of Feminist Geography, 24(7), 954–973. https://doi.org/10.1080/0966369X.2017.1339022
Mostafavi, I., Osareh, F., & Tavakolizadeh-Ravari, M. (2018). Identifying Content Structure of Knowledge and Information Science (KIS) a Studies Based on Co-word Analysis of Articles in a Web of Science (WoS) a Database (2009-2013). Iranian Journal of Information Processing and Management33(3), 1271-1300.
      https://jipm.irandoc.ac.ir/article_699476.html?lang=en [In Persian].
Nash, J. C. (2020). Citational desires: On Black feminism’s institutional longings. Diacritics, 48(3), 76–91. https://doi.org/10.1353/dia.2020.0020
Noyons, E. C., & Van Raan, A. F. (1998). Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research. Journal of the American society for information science49(1), 68-81. https://doi.org/10.1002/(SICI)1097-4571(1998)49:1%3C68::AID-ASI9%3E3.0.CO;2-1
Osareh, F., Soheili, F., & Mansouri, A. (2014). Scientometrics and information visualization. Isfahan University Press. https://press.ui.ac.ir/book_300.html [In Persian].
Paris, G., De Leo, G., Menozzi, P., & Gatto, M. (1998). Region-based citation bias in science. Nature, 396(6708), 210. https://doi.org/10.1038/24249
Popovic, A., & Huecker, M. R. (2023). Study Bias. In StatPearls.
Ray, K. S., Zurn, P., Dworkin, J. D., Bassett, D. S., & Resnik, D. B. (2024). Citation bias, diversity, and ethics. Accountability in Research, 31(2), 158–172.
Riehmann, P., Hanfler, M., & Froehlich, B. (2005, October). Interactive sankey diagrams. In IEEE Symposium on Information Visualization, 2005. INFOVIS 2005. (pp. 233-240). IEEE. https://doi.org/10.1109/INFVIS.2005.1532152
Rossen, K., & Miller, K. A. (2021). Citation bias in organic chemistry research: Are industry-affiliated papers cited less often? Organic Process Research & amp, Development, 25(2), 167–168. https://doi.org/10.1021/acs.oprd.1c00023
Salemi, N., & Koosha, K. (2014). Co-citation Analysis and Co-word Analysis in Bibliometrics Mapping: A Methodological Evaluation. Iranian Journal of Information Processing and Management, 29(1), 253-266. https://doi.org/10.35050/JIPM010.2013.011 [In Persian].
Secchi, D. (2023). A Simple Model of Citation Cartels: When Self-interest Strikes Science. In Advances in Social Simulation: Proceedings of the 17th Social Simulation Conference, European Social Simulation Association (pp. 23-32). Springer. https://doi.org/10.1007/978-3-031-34920-1_3
Sedighi, M. (2015). Using of co-word analysis method in mapping of the structure of scientific fields (case study: The field of Informetrics). Iranian Journal of Information Processing and Management30(2), 373-396. https://doi.org/10.35050/JIPM010.2015.040 [In Persian].
Simundić A. M. (2013). Bias in research. Biochem Med (Zagreb), 23(1), 12–15.
Soheili, F., Shaban, A., & Khaseh, A. (2016). Intellectual structure of knowledge in information behavior: A co-word analysis. Human Information Interaction, 2(4), 21-36.
Soheili, F., Khasseh, A. A., & Koranian, P. (2019). Mapping Intellectual Structure of Knowledge and Information Science in Iran based on Co-word Analysis. Iranian Journal of Information Processing and Management34(4), 1905-1938.
Soltani Zarandi, Z., Negahban, M. B., & Makkizadeh, F. (2016). Co-word analysis of articles in related to Kerman Agriculture in the Islamic World Science Citation (ISCI) according to an approach of scientific map. Iranian Journal of Information Management, 2(3), 74-96.
Squazzoni, F., Bravo, G., Farjam, M., Marusic, A., Mehmani, B., Willis, M., Birukou, A., Dondio, P., & Grimaldo, F. (2021). Peer review and gender bias: A study on 145 scholarly journals. Science advances, 7(2), eabd0299. https://doi.org/10.1126/sciadv.abd0299
Stelmakh, I., Rastogi, C., Liu, R., Chawla, S., Echenique, F., & Shah, N. B. (2023). Cite-seeing and reviewing: A study on citation bias in peer review. PLOS ONE, 18(7), e0283980. https://doi.org/10.1371/journal.pone.0283980
Suzuki, E., Tsuda, T., Mitsuhashi, T., Mansournia, M. A., & Yamamoto, E. (2016). Errors in causal inference: an organizational schema for systematic error and random error. Annals of Epidemiology, 26(11), 788-793. https://doi.org/10.1016/j.annepidem.2016.09.008
Urlings, M. J. E., Duyx, B., Swaen, G. M. H., Bouter, L. M., & Zeegers, M. P. (2021). Citation bias and other determinants of citation in biomedical research: findings from six citation networks. Journal of clinical epidemiology, 132, 71-78.
Van Eck, N. J., & Waltman, L. (2018). VOSviewer manual. Erişim adresi:
Vassar, M., Johnson, A. L., Sharp, A., & Wayant, C. (2021). Citation bias in otolaryngology systematic reviews. Journal of the Medical Library Association, 109(1), 62–68.
Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365-391. https://doi.org/10.1016/j.joi.2016.02.007
Way, S. F., Morgan, A. C., Larremore, D. B., & Clauset, A. (2019). Productivity, prominence, and the effects of academic environment. Proceedings of the National Academy of Sciences USA, 116(22), 10729–10733. https://doi.org/10.1073/pnas.1817431116
Whittaker, J. (1989). Creativity and Conformity in Science: Titles, Keywords and Co-word Analysis. Social Studies of Science, 19(3), 473-496.
Wu, C. (2023). The gender citation gap: Why and how it matters. Canadian review of sociology/Revue canadienne de sociologie, 60(2), 188–211. https://doi.org/10.1111/cars.12428
Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A bibliometric analysis on land degradation: Current status, development, and future directions. Land9(1), 28.
      https://doi.org/10.3390/land9010028
Zangeneh Nejad, N., Hajiheydari, N., & Salehi, M. (2018). Network Analysis of Relations between Information System Theories and Researches. Iranian Journal of Information Management3(2), 27-50. https://www.aimj.ir/article_68829.html [In Persian].
Zaidi, S. J. A., & Taqi, M. (2023). Citation cartels in medical and dental journals. J Coll Physicians Surg Pak, 33(12), 700–701.