Bibliometric Analysis of Customer Ex-perience and Artificial Intelligence

Document Type : Research Paper

Authors

1 Ph.D Student, Department of Business Administration, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Professor, Department of Business Administration, Tarbiat Modares University, Tehran, Iran,

3 Assistant Professor, Department of Business Administration, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Abstract

Recent advancements in digital data collection, cloud computing, the Internet of Things, and machine learning have contributed to the emergence of artificial intelligence as a leading technology. AI significantly enhances customer experience through personalization, chatbots, virtual assistants, virtualization, and predictive analytics. The objective of this study is to analyze and elucidate the current state of scientific literature pertaining to customer experience and artificial intelligence. This research employs scientometric techniques to examine articles indexed in the Web of Science database from 2019 to 2023, aiming to identify prevalent research topics and uncover potential gaps in the literature.
Methodology: This research is descriptive and applied. A total of 203 articles authored by 588 researchers, published across 80 journals and extracted from the Web of Science database, were analyzed using the R bibliometric package. The statistical population comprises all English-language scientific publications related to customer experience and artificial intelligence, particularly those connected to business management, business, financial affairs, and data analysis. Data analysis was conducted using outputs generated by Biblioshiny software. The software used is Biblioshiny, a Java-based web application developed for conducting functional combination research using the bibliometric package within RStudio.
Findings: Scientific output in the fields of customer experience and artificial intelligence has shown an upward trend. The countries with the most publications are the United States, China, England, Australia, and India. Key terms include trust, technology acceptance, experience, word-of-mouth marketing, satisfaction, and technology. Popular and emerging topics include the adoption of information technology, personalized experiences, chatbots, and the analysis of customer sentiments across various industries such as tourism and healthcare. The utilization of artificial intelligence has transformed the customer experience since 2019. Specifically, machine learning predicts and analyzes customer sentiment through feedback and comments to enhance the experience, benefiting both customers and service providers. The United States has demonstrated a significant increase in the number of studies related to customer experience and AI, with 1,229 citations and 161 studies conducted in 2023. This represents a substantial rise from the 13 studies conducted in 2019. The keyword analysis of the article revealed a shift in focus from creativity and word-of-mouth to experience and artificial intelligence, highlighting their increasing importance. Topics such as influence and trust, which are closely related to technology adoption, remained popular in 2022 and 2023, particularly during and after the COVID-19 pandemic. The literature on customer experience and artificial intelligence can be broadly categorized into three primary themes. The first theme encompasses acceptance, information technology, and the technology acceptance model. The second theme covers topics such as tourism, hotels, and the leisure industry. Lastly, the third theme focuses on innovation, encompassing issues such as vision, consumer acceptance, and customer acquisition. Providing customers with positive experiences that consider their feelings and motivations is crucial, as customers prefer experiences that are both pleasant and appropriate. Prominent themes over the past year have included ethics, people, resistance to innovation, behavioral research, and information systems.
Conclusion: Iran has limited scientific productions and international collaborations in the fields of customer experience and artificial intelligence. The keywords experience, vision, influence, and trust are closely associated with technology adoption during the COVID-19 era. The results of the thematic map analysis have provided numerous insights for researchers in this area. The Technology Acceptance Model remains a prominent theme, continuing to attract significant research interest. In contrast, the theme of resistance to innovation has declined in importance and is receiving less attention. The main themes identified are technology and customer satisfaction. Additionally, analyzing customer sentiments through feedback comments is crucial for improving their experience. Employing artificial intelligence and customer personalization technologies enables businesses to provide a distinctive and engaging shopping experience, which in turn enhances customer satisfaction and loyalty. Research on customer experience and artificial intelligence has primarily focused on technology acceptance. Additionally, this area highlights factors influencing both acceptance and resistance to innovation, emphasizing the critical roles of trust and ethics. The impact of these technologies on human interactions and relationships is particularly evident in the healthcare sector. Within the literature on customer experience and artificial intelligence, the use of bots is recognized as a significant trend in service marketing; however, customer acceptance remains a significant barrier to their widespread adoption in service contexts. According to Mora's study, analyzing customers' emotions through feedback and comments is essential for improving their experience. Selecting an appropriate strategy based on emotional and perceptual analysis is crucial for technology acceptance, enabling brands to deliver a delightful experience through artificial intelligence.

Keywords

Main Subjects


افتخاری علی آبادی، ا) .1398). بررسی تأثیر هوش مالی بر رفتار استفاده از کارت‌های اعتباری در میان مشتریان شعب بانک ملت در شهر تهران. دانش مالی تحلیل اوراق بهادار، 12(41)، (تابستان)، 29-43.
ایران‌منش، م.، عزیزی، م.، و توکلی زاده راوری، م. (1400). مطالعه‌ای مبتنی بر تحلیل واژگانی در ادبیات حوزه مدیریت پروژه در طول زمان. پژوهش‌نامه علم‌سنجی، 7(1)، (بهار و تابستان)، 159-182.
پورهادی پشتیری، ز.، قلی‌پور سلیمانی، ع.، دل‌افروز، ن.، و شاهرودی، ک. (1403). شناسایی ابعاد مؤثر بر بیمة غیرمتمرکز کسب‌وکارهای حوزۀ فناوری مالی مبتنی بر زنجیرة بلوکی و هوش مصنوعی. پژوهشنامه بیمه، 14(1)،
حسین زاده، م.، صفا، م.، ملکی، م.، و برهانی، ع. (1404). شناسایی و تحلیل پیشران‌های مؤثر بر صنعت بیمه. پژوهشنامه بیمه، 14(3)، 193-208. https://doi.org/10.22056/ijir.2025.03.02
دلبری، ب.، و رجوعی، م. (1403). تأثیر نوآوری خدمات بر رضایت مشتریان با نقش میانجی ارزش‌آفرینی و دانش مشتری در صنعت بیمه. پژوهشنامه بیمه، 14(1)، ۶۷-۸۰. https://doi.org/10.22056/ijir.2025.01.05
رحمانی، ا.، سروری، م.، رادفر، ر.، و البرزی، م. (1401). مرور نظامند ادبیات پژوهش با محوریت فناوری مالی، یادگیری ماشین و مدیریت تجربه مشتری و ارائه چارچوبی برای پژوهش‌های آتی. مطالعات مدیریت کسب‌وکار هوشمند،10(39)، 329-356.  https://doi.org/10.22054/ims.2022.61447.2006    
رضائی زاده، ک.، و عسکری، م. (1400). هوش مصنوعی بر اساس پایگاه استنادی وب آو ساینس؛ فرا تحلیل از نوع علم‌سنجی. نشریه پژوهش‌های نوین در مدیریت کارآفرینی و توسعه کسب‌وکار، 2(1)، 286- 306.   
شفیعیان، ا.، محمدی الیاسی، ق.، احمدپور داریانی، م.، خاندوزی،س. ا.، و پاداش، ح. (1400). شاکله دانش در نظریه توانمندسازی کارآفرینانه فقرا: یک تحلیل وسیع علم سنجی . توسعه کارآفرینی، 14(1)، 99-118.
صفوی جهرمی، گ.، طباطبائیان، ح.، حنفی‌زاده، پ.، و حاجی میرزائی، ح. (1401). نقشه موضوعی مقالات حوزه تولید محتوای دیجیتال برای کودکان و نوجوانان. مطالعات کتابداری و علم اطلاعات، 14(3).
ضیائی حاجی پیرلو، م.، تقی‌زاده، ه.، و هنرمند عظیمی، م. (1399). ارائه رویکرد تلفیقی مبتنی بر علم‌سنجی و هوش مصنوعی در استخراج الگوی ارزیابی تاب‌آوری زنجیره تأمین. تصمیم‌گیری و تحقیق در عملیات، 5(4)، 522-546.  https://doi.org/10.22105/dmor.2021.251723.1229
قبادی‌لموکی، ت.، قربانی، ز.، پیرحیاتی، ع.، و بیات، ب. (1404). طراحی مدل درگیری اجتماعی برند بر اساس محتوای تولیدشده توسط کاربران در صنعت بیمه. پژوهشنامه بیمه، 14(2)، 147-164.
Abbott, L. (1955). X. Quality competition. In Quality and competition: An Essay in Economic Theory (pp. 124-138). Columbia University Press. https://doi.org/10.7312/abbo92492-012
Abousaber, I., & Abdalla, H. (2024). Review of using technologies of artificial intelligence in companies. International Journal of Communication Networks and Information Security (IJCNIS), 15(1), 233-244. https://doi.org/10.17762/ijcnis.v15i1.5743
Alderson, W. (1957). Marketing Behavior and Executive Action: A Functionalist Approach to Marketing Theory. Richard D. Irwin, ic.
Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114(106548), 1-14.
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Brakus, J. J., Schmitt, B. H., & Zarantonello, L. (2009). Brand experience: What is it? How is it measured? Does it affect loyalty?. Journal of Marketing73(3), 52-68.
Bretas, V. P. G., & Alon, I. (2021). Franchising research on emerging markets: Bibliometric and content analyses. Journal of Business Research, 133, (September), 51–65.
Brill, T. M., Munoz, L., & Miller, R. J. (2019). Siri, Alexa, and other digital assistants: a study of customer satisfaction with artificial intelligence applications. Journal of Marketing Management, 35(15–16), 1401–1436. https://doi.org/10.1080/0267257X.2019.1687571
Brynjolfsson, E., & McAfee, A. (2017). The big idea series: artificial intelligence for real. Harvard Business Review, 7, (July), 3-11.  
Caust, J., & Vecco, M. (2017). Is UNESCO World Heritage recognition a blessing or burden? Evidence from developing Asian countries. Journal of Cultural Heritage27, (October), 1-9. https://doi.org/10.1016/j.culher.2017.02.004
Choudhury, A., & Shamszare, H. (2023). Investigating the impact of user trust on the adoption and use of ChatGPT: Survey analysis. Journal of Medical Internet Research, 25(e47184), 1-11.  https://doi.org/10.2196/47184
Chu, K. M. (2023). A consumer innovation resistance theory perspective on the advanced driver assistance systems. Economic research-Ekonomska istraživanja36(3), 1-19.
Delbari, B., & Rojuee, M. (2024). The effect of service innovation on customer satisfaction with the mediating role of value creation and customer knowledge in the insurance industry. Iranian Journal of Insurance Research, 14(1), 67-80. 
https://doi.org/10.22056/ijir.2025.01.05 [In Persian].
Delgado-Quirós, L., Aguillo, I. F., Martín-Martín, A., López-Cózar, E. D., Orduña-Malea, E., & Ortega, J. L. (2024). Why are these publications missing? Uncovering the reasons behind the exclusion of documents in free-access scholarly databases. Journal of the Association for Information Science and Technology, 75(1), 43 - 58.   https://doi.org/10.1002/asi.24839
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management57(101994). https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Eftekhari Aliabadi, A. (2019). The effect of financial intelligence on the behavior of customers using credit cards in the branches of Bank Mellat in Tehran. Financial Knowledge of Securities Analysis, 12(41), (Spring), 29 - 43.
Ghesh, N., Alexander, M., & Davis, A. (2024). The artificial intelligence-enabled customer experience in tourism: a systematic literature review. Tourism Review, 79(5), 1017-1037.
Ghobadi Lmuki, T., Ghorbani, Z., Pirhayati, A., & Bayat, B. (2025). Designing a social brand engagement model based on user-generated content in insurance industry. Iranian Journal of Insurance Research, 14(2), 147-164. https://doi.org/10.22056/ijir.2025.02.05
[In Persian].
Gursoy, D., Li, Y., & Song, H. (2023). ChatGPT and the hospitality and tourism industry: an overview of current trends and future research directions. Journal of Hospitality Marketing & Management32(5), 579-592. https://doi.org/10.1080/19368623.2023.2211993
Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-isciplinarycomparison. Scientometrics, 106(2), 787-804.
Hosseinzadeh, M., Safa, M., Maleki, M. H., & Borhani, S. A. (2025). Identifying and Analyzing Drivers Affecting the Insurance Industry. Iranian Journal of Insurance Research, 14(3), 193-208. https://doi.org/10.22056/ijir.2025.03.02 [In Persian].
Iranmanesh, M., Azizi, M., & Tavakolizadeh Ravari, M. (2021). A Word-Analysis Study on Literature of Project Management in Span of Time. Scientometrics Research Journal, 7(1), 159-182. https://doi.org/10.22070/rsci.2020.4922.1335 [In Persian].
Köbli, N. A., Leisenheimer, L., Achter, M., Kucera, T., & Schadler, C. (2024). The game of academic publishing: a review of gamified publication practices in the social sciences. Frontiers in Communication9(1323867), 1-11.
Kunz, W. H., Heinonen, K., & Lemmink, J. G. (2019). Future service technologies: is service research on track with business reality? Journal of Services arketing33(4), 479-487.
LaRosa, E., & Danks, D. (2018). Impacts on trust of healthcare AI [Confrence presentation]. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 210-215). Association for Computing Machinery, New York, NY, USA.
Ledro, C., Nosella, A., & Vinelli, A. (2022). Artificial intelligence in customer relationship management: literature review and future research directions. Journal of Business & Industrial Marketing, 37(13), 48-63. https://doi.org/10.1108/JBIM-07-2021-0332
Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69 - 96. https://doi.org/10.1509/jm.15.0420
Li, Y., & Wang, C. (2022). Effect of customer's perception on service robot acceptance. International Journal of Consumer Studies, 46(4), (July), 1241-1261.
Loureiro, S. M. C. (2023). Overview of the brand journey and opportunities for future studies. Italian Journal of Marketing, 2023(2), 179–206.
Martin, J., Mortimer, G., & Andrews, L. (2015). Re-examining online customer experience to include purchase frequency and perceived risk. Journal of retailing and consumer services, 25, (July),  81-95. https://doi.org/10.1016/j.jretconser.2015.03.008
McCarthy, J. (1987). Generality in artificial intelligence. Communications of the ACM30(12),1030-1035. https://doi.org/10.1145/33447.33448
Moura, S., Reis, J. L., & Rodrigues, L., S. (2021). The artificial intelligence in the personalisation of the customer journey – a literature review [Confrence presentation]. CAPSI 2021 Proceedings, Association for Information Systems, 1-10.
Nicolescu, L., & Tudorache, M. T. (2022). Human-computer interaction in customer service: the experience with AI chatbots- a systematic literature review. Electronics, 11(10), 1579. https://doi.org/10.3390/electronics11101579
Panetta, F. (2018). 21st century cash: Central banking, technological innovation and digital currencies. SUERF Policy Note, (40), 1-9. https://www.suerf.org/wp-content/uploads/2023
Peruchini, M., da Silva, G. M. & Teixeira, J. M. (2024). Between artificial intelligence and customer experience: a literature review on the intersection. Discover Artificial Intelligence, 4(4). http://dx.doi.org/10.1007/s44163-024-00105-8
Pillarisetty, R., & Mishra, P. (2022). A review of AI (Artificial Intelligence) tools and customer experience in online fashion retail. International Journal of E-Business Research (IJEBR), 18(2), 1-12. https://doi.org/10.4018/IJEBR.294111
Pine, B. J., & Gilmore, J. H. (1998). Welcome to the experience economy. Harvard Business Review, 76(4), 97-105. https://hbr.org/1998/07/welcome-to-the-experience-economy
Poorhadi Poshtiri, Z., Gholipour Soleimani, A., Delafrooz, N., & Shahroudi, K. (2024). Identifying the effective dimensions of decentralized insurance for businesses in the field of financial technology based on blockchain and artificial intelligence. Iranian Journal of Insurance Research, 14(1), 1-12. https://doi.org/10.22056/ijir.2025.01.01 [In Persian].
Pritchard, A. (1969). Documentation Notes: Statistical bibliography or bibliometrics. Journal of Documentation, 25(4). 348-349. https://doi.org/10.1108/eb026482
Rahmani, A., Sorouri, M., Radfar, R., & Alborzi, M. (2022). Systematic review focusing on financial technology, machine learning, and customer experience and providing framework for future research. Business Intelligence Management Studies, 10(39), 329-356.
https://doi.org/10.22054/ims.2022.61447.2006 [In Persian].
Rezaizadeh, K., & Askari, M. (2021). artificial intelligence based on the Web of Science citation database; Meta-analysis of scientometric type, Journal of New Research in Entrepreneurship Management and Business Development, 2(1), 286-306.
Saydam, M. B., Arici, H. E., & Koseoglu, M. A. (2022). How does the tourism and hospitality industry use artificial intelligence? A review of empirical studies and future research agenda. Journal of Hospitality Marketing & Management, 31(8), 908-936.
Schwager, A., & Meyer, C., (2007). Understanding customer experience: Companies that systematically monitor customer experience can take important steps to improve it and their bottom line. Harvard Business Review, 85(2), 116-26.
Shafieian, A., Mohammadi Elyasi, G., Ahmadpour Dariyani, M., Khandoozi, S. E., & Padash, H. (2021). Body of Knowledge in Theory of Entrepreneurial Empowerment of the Poor: An Extensive Scientometric Analysis. Journal of Entrepreneurship Development, 14(1), 99-118. https://doi.org/10.22059/jed.2021.315258.653536  [In Persian].
Singh, C., Dash, M. K., Sahu, R., & Kumar, A. (2024). Artificial intelligence in customer retention: a bibliometric analysis and future research framework. Kybernetes, 53(11), 4863-4888. https://doi.org/10.1108/K-02-2023-0245
Tabatabaian, S. H., Hanafizadeh, P., & HajiMirzaei, H. (2022). Scientific map for the literature in digital content creation for children and adolescents. Journal of Studies in Library and Information Science, 14(3).  https://doi.org/10.22055/slis.2021.33969.1751 [In Persian].
Thakur, J., & Kushwaha, B. P. (2024). Artificial intelligence in marketing research and future research directions: Science mapping and research clustering using bibliometric analysis. Global Business and Organizational Excellence43(3), 139-155.
Vinaykarthik, B. C., & Mohana. (2022). Design of artificial intelligence (AI) based user experience websites for E-commerce application and future of digital marketing [Conference presentation]. 3rd International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1023-1029). Trichy, India. https://doi.org/10.1109/ICOSEC54921.2022.9952005
Warner, K. S. R. , & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long range planning52(3), 326-349.
https://doi.org/10.1016/j.lrp.2018.12.001                                                             
Yang, X. (2019). Satisfaction evaluation and optimization of tourism E-commerce users based on artificial intelligence technology [Confrence presentation]. International Conference on Robots & Intelligent System (ICRIS) (pp. 373-375). Haikou, China.
Yeung, A. W. K., Parvanov, E. D., Nawaz, F. A., Rayan, R. A., Kletecka-Pulker, M., Willschke, H., & Atanasov, A. G. (2022). COVID-19 Rapid Antigen Tests: Bibliometric Analysis of the Scientific Literature. International Journal of Environmental Research and Public Health19(19), 12493.  https://doi.org/10.3390/ijerph191912493
Zavaraqi, R., & Fadaie, G. R. (2012). Scientometrics or science of science: quantitative, qualitative or mixed one. Collnet Journal of Scientometrics and Information Management, 6(2), 273-278. https://doi.org/10.1080/09737766.2012.10700939
Zhang, W., Sun, L., Wang, X., & Wu, A. (2022). The influence of AI word-of-mouth system on consumers’ purchase behaviour: The mediating effect of risk perception. Systems Research and Behavioral Science, 39(3), 516–530. https://doi.org/10.1002/sres.2871
Ziyaei HajiPirlu, M., Taghizadeh, H., & Honarmand Azimi, M. (2021). An integrated approach based on scientometrics and artificial intelligence for extracting the supply chain resilience assessment model. Journal of Decisions and Operations Research, 5(4), 522-546.