ابراهیمی، س.، دهقان، م.، و جوکار، ع. (1396). بررسی شاخصهای پیشبینی کننده تأثیرگذاری علمی برای افزایش استناد گیری مقالات نشریههای علمی. پژوهشنامه پردازش و مدیریت اطلاعات، 32(3)، 661-694.
آزادی احمدآبادی، ق. (1403).
ارزیابی تأثیرات بروندادهای علمی: مطالعه موردی حوزه زیستفناوری ایران. [گزارش طرح پژوهشی]. مرکز تحقیقات سیاست علمی کشور.
https://nrisp.ac.ir/%D8%A7%D8%B1%D
آزادی احمدآبادی، ق. (1403). سطوح و شاخصهای ارزیابی تأثیرات پژوهش بر اساس تحلیل نظامهای ارزیابی. ترویج علم. 15(1)، 76-103. https://doi.org/10.22034/popsci.2024.424371.1306
آزادی احمدآبادی، ق.، عبدی، س.، و رمضانی، ا. (1401). مطالعه تأثیرات علمی، اقتصادی و اجتماعی پژوهشهای حوزه محیطزیست ایران. محیطزیست و توسعه فرا بخشی، (78)7، 5-38.
بذرافشان، ا.، بیرانوند، ع.، و شجاعی فرد، ع. (1402). پیشبینی تعداد استنادات دریافتی حوزه فیزیک ذرات در اسکوپوس به کمک نمرات دگر سنجی پلامایکس.
فصلنامه بازیابی دانش و نظامهای معنایی، [انتشار آنلاین از ۱۶ خرداد].
https://doi.org/10.22054/jks.2023.71392.1551
بیرانوند، ع.، گلشنی، م.، و دلقندی، ف. (1401). بررسی تأثیر شاخصهای سایت اسکور، اسانآیپی و اسجیآر نشریات حوزه وبمعنایی بر تعداد استنادات دریافتی مقالات. فصلنامه بازیابی دانش و نظامهای معنایی، ۱۲(۴۲). https://doi.org/10.22054/jks.2022.67616.1501
نوروزی چاکلی، ع. (۱402). آشنایی با علمسنجی (مبانی، مفاهیم، روابط و ریشهها). تهران: سازمان مطالعه و تدوین کتب علوم انسانی دانشگاهها (سمت)، مرکز تحقیق و توسعه علوم انسانی؛ دانشگاه شاهد، مرکز چاپ و انتشارات. https://samt.ac.ir/fa/book/99/
Abrishami, A., & Aliakbary, S. (2019). Predicting citation counts based on deep neural network learning techniques. arXiv. https://doi.org/10.48550/arXiv.1809.04365
Akella, A. P., Alhoori, H., Kondamudi, P. R., Freeman, C., & Zhou, H. (2021). Early indicators of scientific impact: Predicting citations with altmetrics.
Journal of Informetrics,
15(2), 101128.
https://doi.org/10.1016/j.joi.2020.101128
Alchokr, R., Haider, R., Shakeel, Y., Leich, T., Saake, G., & Krüger, J. (2023). Forecasting Publication’s Success Using Machine Learning Prediction Models [Conference presentation]. In International Workshop on Bibliometric-Enhanced Information (BIR). CEUR-WS. org.
https://jacobkrueger.github.io/assets/papers/Alchokr2023ForcastingSuccess.pdf
Alohali, Y. A., Fayed, M. S., Mesallam, T., Abdelsamad, Y., Almuhawas, F., & Hagr, A. (2022). A machine learning model to predict citation counts of scientific papers in otology field.
BioMed Research International,
2022, 1-12.
https://doi.org/10.1155/2022/2239152
Anninos, L. N. (2013). Research performance evaluation: Some critical thoughts on standard bibliometric indicators. Studies in Higher Education, 39,(9) 1542–1561.
Ayoub, A., Amin, R., & Wani, Z. A. (2023). Exploring the Impact of Altmetrics in Relation to Citation Count and SCImago Journal Rank (SJR).
Journal of Scientometric Research,
12(3), 603-608.
https://doi.org/10.5530/jscires.12.3.058
Azadi Ahmadabadi, G., Abdi, S., & Ramezani, A. (2022). Studying the Scientific, Economic and Social Effects of Iranian Environmental Researches.
Environment and Interdisciplinary Development,
7(78), 38-55.
https://doi.org/10.22034/envj.2023.351434.1217 [In Persian].
Azadi Ahmadabadi, G. (2024).
Evaluation of the effects of scientific outputs: case study of Iran's biotechnology [Research project report]. National Research Institute for Science Policy (NRISP).
https://nrisp.ac.ir/%D8%A7%D8%B1%/ [In Persian].
Azadi, G. (2024). Evaluation research impacts: levels and indicators. Journal of the Popularization of Science, 15(1), 76-103.
https://doi.org/10.22034/popsci.2024.424371.1306 [In Persian].
Babaakbarisari, A., Ghahremani, M., Fathi vajargah, K., & Moatameni, A. (2021). Developing Management Researches Impacts Assessment Model. Management Research in Iran, 21(1), 93-119. https://mri.modares.ac.ir/article_418.html [In Persian].
Bazrafshan, A., Biranvand, A., & Shojaeifard, A. (2023). Predicting the number of citations received in particle physics Scopus with the help of Plumx-Altmetric scores. Knowledge Retrieval and Semantic Systems, [Available online from 6 June].
https://doi.org/10.22054/jks.2023.71392.1551 [In Persian].
Bai, X., Liu, H., Zhang, F., Ning, Z., Kong, X., Lee, I., & Xia, F. (2017). An overview on evaluating and predicting scholarly article impact. Information, 8(3), 73.
Biranvand, A., Golshani, M., & Delghandi, F. (2022). Investigating the impact of Citescore, SNIP, and SJR indicators of semantic web publications on the number of received citations of articles. Knowledge Retrieval and Semantic Systems, 12(42).
https://doi.org/10.22054/jks.2022.67616.1501 [In Persian].
Bollen, J., Van de Sompel, H., Hagberg, A., & Chute, R. (2009). A principal component analysis of 39 scientific impact measures. PloS one, 4(6), e6022.
Bornmann, L., Leydesdorff, L., & Wang, J. (2013). Which percentile-based approach should be preferred for calculating normalized citation impact values? An empirical comparison of five approaches including a newly developed citation-rank approach (p100).
Journal of Informetrics, 7(4), 933–944.
https://doi.org/10.1016/j.joi.2013.09.003
Ebrahimy, S., Dehghan, M., & Jowkar, A. (2017). Evaluation the predictive indicators of scientific impact to increase the citations of articles in scientific journals. Iranian Journal of Information Processing and Management, 32(3), 661-694.
Guthrie, S., Wamae, W., Diepeveen, S., Wooding, S., & Grant, J. (2013). Measuring research, A guide to research evaluation frameworks and tools, RAND Corporation, MG-1217-AAMC, 2013.
https://www.rand.org/pubs/monographs/MG1217.html
Hansen, I. S., & Torvund, M. (2022). Predicting the impact of academic articles on marketing research: Using machine learning to predict highly cited marketing articles [Unpublished master's dissertation] Norwegian School of Economics. https://openaccess.nhh.no/nhh- xmlui/bitstream/handle/11250/3015929/masterthesis.pdf?sequence=1
Hastie, T., & Tibshirani, R. (1995). Discriminant adaptive nearest neighbor classification and regression. Advances in neural information processing systems, 8, 409-415.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction, Springer Series in Statistics, 337-387.
https://www.sas.upenn.edu/~fdiebold/NoHesitations/BookAdvanced.pdf
Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(2), 140-147.
McNamara, D., Wong, P., Christen, P., & Ng, K. S. (2013). Predicting high impact academic papers using citation network features [Conference presenation]. In Trends and Applications in Knowledge Discovery and Data Mining- PAKDD 2013 International Workshops: DMApps, DANTH, QIMIE, BDM, CDA, CloudSD, Gold Coast, QLD, Australia, April 14-17, 2013, Revised Selected Papers 17 (pp. 14-25). Springer Berlin Heidelberg.
https://link.springer.com/chapter/10.1007/978-3-642-40319-4_2
Paun, M., Abigaela, B., Paul, B., Anastasia, C., Catalina, E., Anne, H., Nicoleta, I., & Eduard, M. (2020). Predicting long-term citation counts in Web of Science: COVID-19 early publications case study. Romanian Statistical Review, (4).
https://www.revistadestatistica.ro/wp-content/uploads/2020/12/A4-RRS4_2020.pdf
Newson, R., King, L., Rychetnik, L., Bauman, A. E., Redman, S., Milat, A. J., Schroeder, J., Cohen, G., & Chapman, S. (2015). A mixed methods study of the factors that influence whether intervention research has policy and practice impacts: perceptions of Australian researchers.
BMJ open,
5(7), e008153.
https://doi.org/10.1136/bmjopen-2015-008153
Noroozi Chakoli, A. (2023). Introduction to scientometric (foundations, concepts, relations & origins). Tehran: SAMT, Shahed University. https://samt.ac.ir/en/book/3376/introduction-to-scientometric [In Persian].
Piryonesi, S. M., & El-Diraby, T. E. (2020). Data analytics in asset management: Cost-effective prediction of the pavement condition index. Journal of infrastructure systems, 26(1).
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000512
Stegehuis, C., Litvak, N., & Waltman, L. (2015). Predicting the long-term citation impact of recent publications. Journal of informetrics, 9(3), 642-657.
Studer, M., Ritschard, G., Gabadinho, A., & Müller, N. S. (2011). Discrepancy analysis of state sequences. Sociological methods & amp; research, 40(3), 471-510.
https://doi.org/10.1177%2F0049124111415372
Timilsina, M., Davis, B., Taylor, M., & Hayes, C. (2016). Towards predicting academic impact from mainstream news and weblogs: A heterogeneous graph-based approach [Conference presentation]. In 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 1388-1389). IEEE.
https://ieeexplore.ieee.org/document/7752425
Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification. Journal of machine learning research, 244-207.
Williams, K., & Lewis, J. M. (2021). Understanding, measuring, and encouraging public policy research impact. Australian Journal of Public Administration, 80(3), 554-564.
Wooldridge, J., & King, M. B. (2018). Altmetric scores: An early indicator of research impact. Journal of the Association for Information Science and Technology, 70(3), 271–282.
Xiong, C., Sun, H., Pan, D., & Li, Y. (2019). Personalized Collaborative Filtering Recommendation Algorithm based on Linear Regression [Conference presentation]. In 2019 IEEE International Conference on Power Data Science (ICPDS) (pp. 363–368). IEEE. https://doi.org/10.18280/mmep.060307
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.H., Steibach, M., Hand, D. J., & Steinberg, D. (2007). Top 10 algorithms in data mining. Knowledge and information systems, 14(1), 1-37.
Yu, T., Yu, G., Li, P.-Y., & Wang, L. (2014). Citation impact prediction for scientific papers using stepwise regression analysis. Scientometrics, 101(2), 1233-1252.
Zhang, F., & Wu, S. (2020). Predicting future influence of papers, researchers, and venues in a dynamic academic network. Journal of Informetrics, 14(2), 101035.
Ziegler, A., & König, I. R. (2013). Mining data with random forests: current options for real‐world applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(1), 55-63. https://doi.org/10.1002/widm.1114