شناسایی و ارزیابی شاخص‌های علم، فناوری و نوآوری در حوزه سیاست‌گذاری از منظر خبرگان

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار گروه تاریخ و علوم اجتماعی، دانشکده علوم انسانی، دانشگاه ولایت، ایرانشهر، ایران.

چکیده

هدف: این پژوهش با هدف شناسایی و ارزیابی شاخص­‌های علم، فناوری و نوآوری در حوزة سیاست­‌گذاری انجام‌شده است.
روش‌شناسی: این مطالعه ازنظر هدف کاربردی و ازنظر ماهیت نیز اکتشافی-توصیفی است که به‌صورت دلفی انجام شد. در مرحلة اول برای شناسایی شاخص­‌ها از روش کتابخانه­‌ای و مرور منابع مختلف استفاده شد، سپس در مرحلة دوم به‌منظور ارزیابی وضعیت شاخص­ها از ابزار پرسشنامه استفاده شد. جامعة آماری پژوهش، خبرگان حوزة علم‌­سنجی بودند که با نمونه­‌گیری گلوله برفی تعداد 15 نفر از آن­ها انتخاب شدند. برای تجزیه‌وتحلیل داده­‌ها از آزمون تی تک نمونه‌­ای استفاده شد.
یافته‌ها: یافته­‌ها حاکی از استخراج و شناسایی 115 شاخص در 10 طبقه شامل طبقه انتشارات علمی و استنادات، اقتصاد، زیرساخت انرژی، معدن و فناوری سبز، توسعة سرمایه انسانی، آموزش‌وپرورش، فناوری اطلاعات و ارتباطات،  امور مالی و پیچیدگی بازار، حکمرانی،  خروجی (تولیدات) خلاقانه، مؤسسات و نهادها،  نیروی کار تحقیق و سرمایه‌گذاری تحقیق و توسعه است. تمامی 115 شاخص از منظر خبرگان دارای مطلوبیت و مناسبت با طبقه خود بودند.
نتیجه‌گیری: شناسایی شاخص­های علم، فناوری و نوآوری گامی مهم و تعیین­کننده در سیاست­گذاری­های مربوطه است و شاخص­ها کمک می­کنند تا ظرفیت­های کشور در حوزه­های مرتبط برای توسعة علمی شناسایی و آسیب­شناسی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification and Evaluation of Indicators of Science, Technology, and Innovation in Policymaking from the Perspective of Experts

نویسنده [English]

  • Esmaeil Shirali
Associate Professor of History and Social Science Department, Faculty of Literature and Humanities, Velayat University, Iranshahr, Iran.
چکیده [English]

Purpose: Considering that in most countries there is a strong desire to create strong systems of science, technology, and innovation for sustainable economic growth, the presence of such a system can enhance the competitiveness of nations within the global trade framework. One of the primary focus for developing policies in science, technology, and innovation is the accurate compilation of relevant indicators in this field.
Methodology: This research was conducted using the Delphi method, which is characterized as exploratory-descriptive in both purpose and nature. In the first stage, the library method and a review of various sources were employed to identify the indicators. In the second stage, a questionnaire was utilized to assess the status of these indicators. The statistical population for this research consisted of experts in the field of Scientology, from which 15 individuals were selected using snowball sampling. A one-sample t-test was employed to analyze the data.
Findings: The findings reveal the extraction and identification of 115 indicators across 10 categories. These categories include scientific publications and citations, which encompass 5 indicators; the economy, with 13 indicators; energy infrastructure, mining, and green technology, with 16 indicators; human capital development in education and training, with 14 indicators; information and communication technology, with 8 indicators; financial affairs and market complexity, with 13 indicators; governance, with 16 indicators; creative output (products), with 10 indicators; institutions and organizations, with 9 indicators; and research workforce and research investment and development, which is assessed with 11 indicators. In the category of scientific publications and citations, the productivity and impact index of citing a scientist or researcher's publications has an average score of 3.94, while the index for scientific and technical articles and journals has an average of 3.61, making them the most suitable and desirable indicators in this category. Within the economic category, the indicators for the complexity of the production process average 3.97, the intensity of industrialization averages 3.72, and intellectual property payments average 3.59, indicating their high favorability. In the category of energy infrastructure, mining, and green technology, the indicators for fuel imports average 3.86, fossil fuel energy consumption averages 3.82, and gross domestic product per unit of energy consumption averages 3.79, demonstrating their desirability. For human capital development in education, the indicators for incoming mobility in the third academic year average 3.97, the availability of the latest technologies averages 3.94, and university rankings averages 3.82, all reflecting high desirability. In the realm of information and communication technology, the indicators for the export of ICT services average 3.85, the creation of an organizational model averages 3.72, and access to information and communication technology averages 3.67, indicating their significance. In the category of financial affairs and market complexity, the indicators for foreign market size average 3.91, trade, competition, and market scale average 3.83, labor force participation and working women average 3.79, the export of goods and services averages 3.76, and unemployment averages 3.73, all showcasing their desirability. Finally, in the field of governance, the indicators for the regulatory environment average 3.79, payments for the use of intellectual property average 3.76, and the efficiency of government expenditures average 3.64, highlighting their relevance. In the category of creative outputs (products), the value chain development indicators include an average score of 4 for the export of creative goods, an average of 3.97 for the export of cultural and creative services, and an average of 3.88 for industrial plans. Additionally, international patent applications have an average score of 3.76. Outputs and products with high and medium-high technology also demonstrate significant desirability, with an average score of 3.73.
Conclusion: Identifying the indicators of science, technology, and innovation is an important and decisive step in the relevant policies. These indicators help to identify and harm the country's capacities in related fields for scientific development.

کلیدواژه‌ها [English]

  • STI indicators
  • Policy-making
  • Science & technology
 
پاک نیت، م.، و نوروزی، ن. (1395). بررسی شاخص‌های تأثیرگذار بر روند پیشرفت علم و فناوری. رهیافت، 26(61)، 25-48. https://rahyaft.nrisp.ac.ir/article_13584.html?lang=fa
رضاقلی لالانی، ز.، نوروزی چاکلی، ع.، اباذری، ز.، و سپهر، ف. (1400). شناسایی و تبیین ساختار و رویکرد موجود در شاخص‌های ارزیابی علم و فناوری حوزه مهندسی در ایران و کشورهای منتخب. پژوهشنامه علمسنجی، 7(14)، 173-196.  https://doi.org/10.22070/rsci.2021.13453.1452
زارع احمدآبادی، ح.، صفاری دربرزی، ع.، عندلیب اردکانی، د.، سلامی، ر.، و مالکی نژاد، پ. (1400). طراحی مدل نقشه شناخت فازی عوامل مؤثر بر سیاست‌گذاری علم، فناوری و نوآوری در منطقه ویژه علم و فناوری استان یزد. بهبود مدیریت، 15(1)، 149-179. https://doi.org/10.22034/jmi.2021.266124.2461
قاضی‌نوری، س.، و فرازکیش، م. (1397). الگوی ارزیابی ملی علم، فناوری و نوآوری بر اساس شاخص‌های کارایی، اثربخشی و سودمندی. مطالعات راهبردی سیاست‌گذاری عمومی، 8(27): 205-229.
مرادی پور، ح.، حاجیانی، الف.، و خلیفه سلطانی، ح. (1396). رهیافتی به پیامدهای سیاست گذاری علم و فناوری در ایران بر اساس تحلیل اسناد بالادستی. پژوهش در نظام‌های آموزشی، ۱۱(۳۷)، ص. ۱۵۱-۱۷۸.
Allard, G. (2015). Science and technology capacity in Africa: a new index. Journal of African Studies and Development, 7(6), 137-147.
Bell, S., Bauler, T., & Sebastien, L. (2011). A Synthesis of the Findings of the POINT Project. Organisme financeur EU.  
Boaz, A., & Ashby, D. (2003). Fit for purpose?: assessing research quality for evidence based policy and practice (Vol. 11). London: ESRC UK Centre for Evidence Based Policy and Practice. https://www.researchgate.net/publication/251774136_Fit_for_Purpose_Assessing_Research_Quality_for_Evidence_Based_Policy_and_Practice
Boshoff, N., & Mouton, J. (2003). Science policy indicators. Human resources development review 2003: Education, employment and skills in South Africa.
Blankley, W., & Kahn, M. (2005). The history of research and experimental development measurement in South Africa and some current perspectives: science policy. South African Journal of Science, 101(3-4), 151-156. http://hdl.handle.net/20.500.11910/9196
Dutta, S., Escalona Reynoso,  R., Wunsch-Vincent, S., Rivera León, L., & Hardman, C. (2019). Creating Healthy Lives–The Future of Medical Innovation. Global innovation index, 41-58. https://www.wipo.int/documents/d/global-innovation-index/docs-en-2019-wipo_pub_gii_2019-chapter1b.pdf
Felt, U., Fouché, R., Miller, C., & Smith-Doerr, L. (2017). Doing, Exploring, and Reflecting on Methods. The Handbook of Science and Technology Studies, 27-30.
Freeman, C., & Soete, L. (2009). Developing science, technology and innovation indicators: What we can learn from the past. Research Policy, 38(4), 583-589.
Ghazinoory, S., & Farazkish, M. (2018). A modal for STI national evaluation based efficiency, effectiveness, and Utility index. Strategic Studies of Public Policy, 8(27), 205-229.
Godin, B. (2002). Outline for a history of science measurement. Science, technology, & human values, 27(1), 3-27. https://www.jstor.org/stable/690273
Gudmundssson, H., Morse, S., Bauler, S., & T. L. Markku. (2009, June). The use and influence of indicators–a conceptual framework for research. In Knowledge, Technologies and changing institutions.
      https://difusion.ulb.ac.be/vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/223989/Details
Hall, B. H., & Jaffe, A. B. (2018). Measuring science, technology, and innovation: A review. Annals of Science and Technology Policy, 2(1), 1-74.  
      http://dx.doi.org/10.1561/110.00000005
Hezri, A. A., & Hasan, M. N. (2004). Management framework for sustainable development indicators in the State of Selangor, Malaysia. Ecological indicators, 4(4), 287-304.
Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information & management42(1), 15-29.
Kang, D., Jang, W., Kim, Y., & Jeon, J. (2019). Comparing national innovation system among the USA, Japan, and Finland to improve Korean deliberation organization for national science and technology policy. Journal of Open Innovation: Technology, Market, and Complexity, 5(4), 82. https://doi.org/10.3390/joitmc5040082
Lundvall, B. Å., Borrás, S., Fagerberg, J., & Mowery, D. C. (2005). The Oxford handbook of innovation. In Science, technology and innovation policy. (pp. 599-631). Oxford, UK: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199286805.003.0022
Lundvall, B. Å. (2010). (ed.). National systems of innovation: Toward a theory of innovation and interactive learning. Anthem press. London, UK.
Manyuchi, A. E., & Mugabe, J. O. (2017). The production and use of indicators in science, technology and innovation policy-making in Africa: Lessons from Malawi and South Africa. Journal of Science and Technology Policy Management, 9(1), 21-41.
Manyuchi, A. E. (2018). Conceptualizing and institutions facilitating the use of innovation indicators in South Africa’s science, technology, and innovation policymaking. African Journal of Science, Technology, Innovation and Development, 10(4), 483-492.
      https://doi.org/10.1080/20421338.2018.1475542
Manyuchi, A. E., & Mugabe, J. O. (2017). The production and use of indicators in science, technology and innovation policy-making in Africa: Lessons from Malawi and South Africa. Journal of Science and Technology Policy Management, 9(1), 21-41.
Martin, B. R. (2012). The evolution of science policy and innovation studies. Research policy, 41(7), 1219-1239. https://doi.org/10.1016/j.respol.2012.03.012
Moradipour, H., Hajiani, E., & Khalifeh Soltani, H. (2017). Approach to the Results of Science and Technology Policy in Iran, Based on the Analysis of Upstream Documents. Journal of Research in Educational Systems11(37), 151-178.
Okamura, A., & Nishijo, K. (2020). Constructing vision-driven indicators to enhance the interaction between science and society. Scientometrics, 125(2), 1575-1589.
OECD (1992). Technology and the Economy, The Key Relationships. OECD, Paris.  P 328.
      https://journals.sagepub.com/doi/pdf/10.1068/c120257
Ozkaya, G., Timor, M., & Erdin, C. (2021). Science, technology, and innovation policy indicators and comparisons of countries through a hybrid model of data mining and MCDM methods. Sustainability, 13(2), p 694. https://doi.org/10.3390/su13020694
Pakiyat, M., Norouzi, N. (2015). A Study on Indices Affecting the Progress of Science and Technology in Iran and the Countries of Central and Eastern Asia. Rahyaft, 26(61), 25-48. https://rahyaft.nrisp.ac.ir/article_13584.html?lang=en [in Persian].
Rezagholi Lalani, Z., Noroozi Chakoli, A., Abazari, Z., & Sepehr, F. (2021). Identifying and exploring the structure and approach in the indicators of science and technology evaluation in engineering in Iran and selected countries. Scientometrics Research Journal, 7(14), 173-196. https://doi.org/10.22070/rsci.2021.13453.1452 [In Persian].
Sawahel, W. (2014). African innovation outlook II, new science indicators. University World News, (325). https://www.nepad.org/publication/african-innovation-outlook-ii
Sliogeriene, J., Turskis, Z., & Streimikiene, D. (2013). Analysis and choice of energy generation technologies: The multiple criteria assessment on the case study of Lithuania. Energy Procedia, 32, 11-20. https://doi.org/10.1016/j.egypro.2013.05.003
Sun, Y., & Cao, C. (2020). The dynamics of the studies of China’s science, technology and innovation (STI): A bibliometric analysis of an emerging field. Scientometrics, 124(2), 1335-1365. https://doi.org/10.1007/s11192-020-03500-x
Tijssen, R., & Hollanders, H. (2006). Using science and technology indicators to support knowledgebased economies. UNU-MERIT, No. 11.
UNCTAD (2010). Science, technology and innovation indicators for policymaking in developing countries: an overview of experiences and lessons learned. Ad Hoc Expert Group Meeting on Science, Technology and Innovation Indicators, Geneva (20-22 January).
Van Heerden, J., & Mulumba, M. (2023). Science, Technology and Innovation (STI): Its Role in South Africa’s Development Outcomes and STI Diplomacy. In: Ittekkot, V., & Baweja, J.K. (eds), Science, Technology and Innovation Diplomacy in Developing Countries. Research for Development (pp. 141-154). Springer, Singapore. https://doi.org/10.1007/978-981-19-6802-0_9
Walsh, P. P., Murphy, E., & Horan, D. (2020). The role of science, technology and innovation in the UN 2030 agenda. Technological Forecasting and Social Change, 154,  p. 119957. https://doi.org/10.1016/j.techfore.2020.119957
Zare Ahmadabadi, H., Saffari Darberazi, A., Andalib Ardakani, D., Salami, S. R., & Malekinejad, P. (2021). Designing a Fuzzy Cognition Map Model of Factors Affecting Science, Technology and Innovation Policy-Making in Yazd Science and Technology Corridor. Journal of Improvement Management, 15(1), 149-179.