شناسایی مؤلفه‌های تحلیل اطلاعات در نظام‌های بازیابی، بر اساس فنون مصورسازی اطلاعات در علم‌سنجی: مرور نظام‌مند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای علم اطلاعات و دانش‌شناسی، پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک)

2 دانشیار گروه علم اطلاعات و دانش شناسی دانشگاه شاهد

3 استادیار، گروه علم اطلاعات و دانش‌شناسی، پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک)

چکیده

هدف: هدف پژوهش حاضر بررسی مؤلفه‌های حوزه تحلیل اطلاعات در نظام‌های بازیابی اطلاعات است.
روش‌شناسی: روش پژوهش مرور نظام‌مند و تحلیل محتوای کیفی است. جامعه پژوهشی شامل مقالات پژوهشی حوزه تحلیل اطلاعات در نظام‌های بازیابی اطلاعات است که توسط استراتژی جستجوی ساخته شده در بازه زمانی از ابتدا تا سال 2019 در پایگاه‌های علمی یافته شده است. برای نمونه‌گیری از بیانیه پریزما استفاده شده است. در ابتدا تعداد 2048 مقاله شناسایی و پس از طی مراحل شناسایی، غربالگری،‌ شایستگی‌ و شامل‌شدن 83 مقاله برای تحلیل نهایی انتخاب شدند و مورد تحلیل محتوای کیفی قرار گرفتند.
یافته‌ها: با توجه به یافته‌ها پنج مقوله اصلی «تجزیه و تحلیل» («ارزیابی و مقایسه»، «همکاری و علم‌سنجی»، «تحلیل متن»)، «توصیف» («فراداده»، «سطوح بازنمایی»، «نمایش رابط کاربر»)، «تعامل انسان و رایانه» («ناوبری»، «جستجو»، «پالایش»، «مرتب‌سازی»، «گفتگوی بین نظام و کاربر»، «پیوندها»، «شخصی‌سازی»)، «مدیریت اطلاعات» («مدیریت سیستم»، «مدیریت کاربران»، «راهنماها») و «نتایج تحلیل اطلاعات» («اکتشاف»، «جنبه‌های روان‌شناختی») به دست آمد.
نتیجه‌گیری: دسته‌بندی به‌دست‌آمده در این پژوهش می‌تواند به‌منظور طراحی نظام‌های بازیابی اطلاعات به‌صورت تحلیلی‌تر و ارزیابی آنها مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying the Information Analysis Components in Retrieval Systems, Based on Information Visualization Techniques in Scientometrics: A Sys-tematic Review

نویسندگان [English]

  • Maryam Mousavizadeh 1
  • Abdolreza Noroozi Chakoli 2
  • Roya Pournaghi 3
1 PhD. Student in knowledge and information science; Iranian Re-search Institute for Information Science and Technology (IRAN-DOC).
2 Associate Professor, Department of Information Science and Knowledge Studies; Shahed University.
3 Assistant Professor, Department of Information Science and Knowledge Studies; Iranian Research Institute for Information Sci-ence and Technology (IRANDOC).
چکیده [English]

Purpose: The purpose of this research is to study the components of the information analysis in information retrieval systems.
Methodology:The current study has been done using systematic review and qualitative content analysis. The statistical population includes research articles in the field of information analysis in information retrieval systems, which have been found by search strategies from the beginning to 2019 in the scientific databases (Scopus, Science Direct, Pubmed, and IEEE). PRISMA Statement was used for sampling. First 2048 articles were identified and then after four steps (Identification, Screening, Eligibility, and Inclusion), 83 articles were selected for final analysis.  
Findings: For answering the research question about what is effective components of information analysis in Information retrieval systems, there are five basic categories was obtained Analytics (“Benchmarking”, “Collaboration and Scientometrics”, “Text analysis”), Description (“Analyzed fields”, “Representation levels”, “Presentation”), Human-computer interaction (“Navigation”, “Searching”, “Filtering”, “Sorting”, “user-system dialog”, “Links”, “Personalization”), Information management (“System management”, “User management”, “Helps”) and Information analysis results (“Exploration”, “Psychological aspects”).
Conclusion: The obtained categorization in current research can be noticed for information retrieval systems design more analytically and evaluate them.

کلیدواژه‌ها [English]

  • Information analysis
  • analytical information retrieval
  • Systematic review
  • information visualization
  • scientometrics
 
حسینی، سید مهدی. (1390). بررسی عناصر و مؤلفه‌های رابط کاربر در نظام‌های بازیابی اطلاعات مبتنی بر خوشه‌بندی. فصلنامه علوم و فناوری اطلاعات، 26 (3)، 625-653.
خسروی، عبدالرسول و فتاحی، رحمت‌الله. (1389). تحلیل ساختار و الگوریتم ذخیره و بازیابی اطلاعات در پایگاه‌های استنادی وبی. علوم و فناوری اطلاعات، 26 (2)، 199-222.
علیدوستی، سیروس، شهریاری، پرویز، خسروجردی،‌ محمود، شیرانی، فرهاد‌ و بیرامی طارونی، حمیده. (1388). الگوی توصیف و تحلیل پایان‌نامه‌ها و رساله‌ها. علوم و فناوری اطلاعات، 24 (4)، 5-28.
گنجی،‌ علیرضا. (1382). تحلیل اطلاعات و مراکز تحلیل اطلاعات. پیام کتابخانه،‌ 13 (1 و 2)، 17-31.
Adams, B., McKenzie, G., & Gahegan, M. (2015). Frankenplace: Interactive thematic mapping for Ad Hoc exploratory search. Proceedings of the 24th International Conference on World Wide Web, 12-22.
Ahn, J.-w., & Brusilovsky, P. (2013). Adaptive visualization for exploratory information retrieval. Information Processing & Management, 49(5), 1139-1164.
Analytics. Wikipedia, the free encyclopedia. Retreived February 24, 2020.    https://en.wikipedia.org/wiki/Analytics
Behrisch, M., Korkmaz, F., Shao, L., & Schreck, T. (2014). Feedback-driven interactive exploration of large multidimensional data supported by visual classifier. 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), 43-52. doi:10.1109/VAST.2014.7042480
Borner, Katy. Chaomei Chen, and Kevin W. Boyack. 2003. Visualizing Knowledge Domains. Annual Review of Information Science and Technology 37:179-255.
Case, D. (Ed). (2007). Looking for information. Emerald Group Publishing.
Chau, M. (2011). Visualizing Web Search Results Using Glyphs: Design and Evaluation of a Flower Metaphor. ACM Transactions on Management Information Systems 2(1).
Cleverley, P. H., & Burnett, S. (2015). Retrieving haystacks: A data driven information needs model for faceted search. Journal of Information Science, 41(1), 97-113.
Cole, C., and Leide, J. E. (2003). Using the User's Mental Model to Guide the Integration of Information Space into Information Need. Journal of the American Society for Information Science and Technology, 54(1), 39-46.
Creswell, John W. and Miller, Dana L. (2000). Determining Validity in Qualitative Inquiry. Theory into Practice, 39(3), Getting Good Qualitative Data to Improve Educational Practice (Summer, 2000), 124-130.
Crossno, P. J., Wilson, A. T., Shead, T. M., Davis Iv, W. L., & Dunlavy, D. M. (2013). Topicview: Visual analysis of topic models and their impact on document clustering. International Journal on Artificial Intelligence Tools, 22(5).
Dey, L., Mahajan, D., & Gupta, H. (2014, 11-14 Aug.). Obtaining Technology Insights from Large and Heterogeneous Document Collections. Paper presented at the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).
Dillon, A. (2000). Spatial-semantics: How users derive shape from information space. JASIS, 51, 521-528.
Ding, Y., Chowdhury, G. G., Foo, S., & Qian, W. (2000). Bibliometric Information Retrieval System (BIRS): A web search interface utilizing bibliometric research results. Journal of the American Society for Information Science and Technology, 51(13), 1190-1204.
Dork, Marian. (2012). Visualization for Search: Exploring Complex and Dynamic Information Spaces. PhD diss., Department of Computer Science, University of Calgary.
Dork, M., Williamson, C., & Carpendale, S. (2012). Navigating tomorrow's web: From searching and browsing to visual exploration. ACM Transactions on the Web, 6(3).
Driessen, S., Jacobs, J., & Huijsen, W. O. (2006). Combining query and visual search for knowledge mapping. Proceedings of the International Conference on Information Visualisation, 216-221.
Fried, D., & Kobourov, S. G. (2014). Maps of computer science. IEEE Pacific Visualization Symposium, 113-120.
Garfield, E. 1955. Citation indexes for sciences: A new dimension in documentation through association of ideas. Science 122 (3159): 108-111.
Glenisson, P., W. Glänzel, F. Janssens, and Moor, B. De. (2005). Combining Full Text and Bibliometric Information in Mapping Scientific Disciplines. Information Processing and Management, 41, no. 6, 1548-72.
 Görg, C., Liu, Z., Kihm, J., Choo, J., Park, H., & Stasko, J. (2013). Combining Computational Analyses and Interactive Visualization for Document Exploration and Sensemaking in Jigsaw. IEEE Transactions on Visualization and Computer Graphics, 19(10), 1646-1663.
Gove, R., Dunne, C., Shneiderman, B., Klavans, J., & Dorr, B. (2011). Evaluating visual and statistical exploration of scientific literature networks. IEEE Symposium on Visual Languages and Human Centric Computing, VL/HCC 2011, 217-224.
Granitzer, M., Kienreich, W., Sabol, V., Andrews, K., & Klieber, W. (2004). Evaluating a system for interactive exploration of large, hierarchically structured document repositories. IEEE Symposium on Information Visualization, INFO VIS, 127-133.
Heer, J., and Agrawala, M. (2008). Design Considerations for Collaborative Visual Analytics. Information Visualization, 7(1), 49-62.
Hess, D. J. (1997). Science Studies: An advanced introduction. New York: New York University Press.
Hoeber, O. (2013). A longitudinal study of HotMap web search. Online Information Review, 37(2), 252-267.
Hoeber, O., Schroeder, D., & Brooks, M. (2009). Real-world user evaluations of a visual and interactive web search interface. Proceedings of the International Conference on Information Visualisation, 119-126.
Hoeber, O., & Xue, D. Y. (2006). The visual exploration of web search results using HotMap. Proceedings of the International Conference on Information Visualisation, 157-165.
Houy, C., Sainbuyan, K., Fettke, P., & Loos, P. (2013, 29-31 May). Towards automated analysis of fads and trends in information systems research: Concept, implementation and exemplary application in the context of business process management research. Paper presented at the IEEE 7th International Conference on Research Challenges in Information Science (RCIS), 1-11.
Hsieh, Hsiu- Fang, and Shanon, Sara E. (2005). Three Approaches to Content Analysis. Qualitative Health Research, 15(9).
Hsiao, Ruey-Lung. (2010). Building an Information Exploration System. PhD diss., University of California, Los Angeles.
Jaeschke, G., M. Leissler, and M. Hemmje. (2005) Modeling Interactive, 3-Dimensional Information Visualizations Supporting Information Seeking Behaviors. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3426 LNCS, 119-35.
Jee, T., Lee, H., & Lee, Y. (2013). Visualization of document retrieval using external cluster relationship. Journal of Information Science and Engineering, 29(1), 35-48.
Julien, C. A., Guastavino, C., & Bouthillier, F. (2012). Capitalizing on information organization and information visualization for a new-generation catalogue. Library Trends, 61(1), 148-161.
Julien, C. A., Leide, J. E., & Bouthillier, F. (2008). Controlled user evaluations of information visualization interfaces for text retrieval: Literature review and meta-analysis. Journal of the American Society for Information Science and Technology, 59(6), 1012-1024.
Kando, Noriko. (1999). Text Structure Analysis as a Tool to Make Retrieved Documents Usable. In Proceedings of the 4th International Workshop on Information Retrieval with Asian Languages, Taipei, Taiwan, Nov. 11-12, 126-135.
Kandogan, E. (2012). Just-in-Time Annotation of Clusters, Outliers, and Trends in Point-Based Data Visualizations. Paper presented at the IEEE Conference on Visual Analytics Science and Technology (VAST), 14-19 Oct. 2012, 73-82.
Khazaei, T., & Hoeber, O. (2017). Supporting academic search tasks through citation visualization and exploration. International Journal on Digital Libraries, 18(1), 59-72.
Kim, B., Johnson, P., and Huarng, A. S. (2002) Colored-Sketch of Text Information. Informing Science, 5(4), 163-73.
Kolman, S. (2014). Infomaps: integrated data and document visualization and analysis. PhD diss., University of Massachusetts Lowell.
Kolman, S., Dufilie, A. S., Anbalagan, S. K., & Grinstein, G. (2012). InfoMaps: A session based document visualization and analysis tool. Proceedings of the International Conference on Information Visualisation, 274-282.
Knautz, K., Soubusta, S., & Stock, W. G. (2010). Tag clusters as information retrieval interfaces. Proceedings of the Annual Hawaii International Conference on System Sciences.
Kreutz, C.K., Boesten, P., Witry, A., Schenkel, R. (2018). FacetSearch: A faceted information search and exploration prototype. CEUR Workshop Proceedings, 2191, 215-226.
Leydesdorff, L. and Milojevic, S. (2013). Scientometrics. arXiv:1208.4566, forthcoming in: Lynch, M. (editor), International Encyclopedia of Social and Behavioral Sciences subsection 85030. (2015)
Lieberman, M. D., Taheri, S., Guo, H., Mirrashed, F., Yahav, I., Aris, A., & Shneiderman, B. (2011). Visual exploration across biomedical databases. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(2), 536-550.
Moher, David, Liberati, Alessandro, Tetzlaff, Jennifer, Altman, Douglas G., The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med, 6(7): e1000097.
Mukherjea, S. (2000). WTMS: a system for collecting and analyzing topic-specific Web information. 33(1), 457-471.
Pajic, Dejan. 2014. Browse to search, visualize to explore: Who needs an alternative information retrieving model?.  Computers in Human Behavior 39(0): 145-153. doi: http://dx.doi.org/10.1016/j.chb.2014.07.010.
Piao, B., & Tanaka, Y. (2014). Interactive framework for exploratory search, integration, and visual analysis of semantic web resources. ACM International Conference Proceeding Series, 200-206.
Reddy, K. Pradeep, Reddy, T. Raghunadha, Naidu, G. Apparao, Vardhan, B. Vishnu. (2018). Impact of Similarity Measures in Information Retrieval. International Journal of Computational Engineering Research (IJCER), 8(6),54-59.
Rauch, M., Klieber, W., Wozelka, R., Singh, S. and Sabol, V. (2015). Knowminer Search - A Multi-visualisation Collaborative Approach to Search Result Analysis. 19th International Conference on Information Visualisation, Barcelona, 379-385.
Sallaberry, A., Zaidi, F., Pich, C., and Melançon, G. (2010). Interactive Visualization and Navigation of Web Search Results Revealing Community Structures and Bridges. Proceedings - Graphics Interface, 105-112.
Saracevic, T. (1997). The stratified model of information retrieval interaction: Extension and applications. Proceedings of the American Society for Information Science, 34, 313-327.
Sarrafzadeh, B., & Lank, E. (2017). Improving exploratory search experience through hierarchical knowledge graphs. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 145-154.
Shen, Z., Ogawa, M., Teoh, S.T., Ma, K.L. (2006). BiblioViz: A system for visualizing bibliography information. Proceedings of the 2006 Asia-Pacific Symposium on Information Visualisation, 60, 93-102.
Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: IEEE Visual Languages. 336{343}.
Shrikumar, A. (2013). Designing an Exploratory Text Analysis Tool for Humanities and Social Sciences Research. PhD diss., University of California.
Song, M. (2000). Visualization in information retrieval: A three-level analysis. Journal of Information Science, 26(1), 3-19.
Spoerri, A. (2007, 2-2 July). Coordinating Linear and 2D Displays to Support Exploratory Search. Paper presented at the Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007), 16-26.
Sugimoto, Masanori, Hori, Koichi, and Ohsuga, Setsuo. (1996). A system to visualize different viewpoints for supporting researchers' creativity. Knowledge‌‌Based Systems, 9(6), 369‌‌-376.
Suvanaphen, E., & Roberts, J. C. (2007). Visualizing evolving searches with EvoBerry. Proceedings of the International Conference on Information Visualisation, 238-244.
Sweet, M. and Moynihan, R. (2007). Improving population health: the uses of systematic review, New York: Millbank Memorial Fund.
Thai, V., Handschuh, S., & Decker, S. (2008). IVEA: An information visualization tool for personalized exploratory document collection analysis, 5021 LNCS, 139-153.
 Tilahun, B., Kauppinen, T., Kessler, C., & Fritz, F. (2014). Design and development of a linked open data-based health information representation and visualization system: potentials and preliminary evaluation. JMIR Med Inform, 2(2), e31.
Toussaint, Yannick and Capponi, Nicolas. (1997). The ILIAD Project: Analysing Information using Informetrics Techniques and Natural Language Processing. Third Delos Workshop, Cross - Language Information Retrieval, Zurich, 5-7 March.
Wilhelmy, Jr., Odin and Brown, Patricia. (1968). The information analysis center – a key to better use of the information center. Journal of Chemical Documentation, 8(2), 106-109.
Wing, S., (1994). A Geographical information system to support management of marine resources. Marine Biology, 16(4), 12-15
Wolfram, Dietmar.(2015) The symbiotic relationship between information retrieval and informetrics.  Scientometrics 102(3): 2201-2214.
Xu, W., Esteva, M., Jain, S. D., & Jain, V. (2011, 23-28 Oct.). Analysis of large digital collections with interactive visualization. Paper presented at the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), 241-250.
Yuan, X., Zhang, X., & Trofimovsky, A. (2010). Testing visualization on the use of information systems. IIiX 2010 - Proceedings of the 2010 Information Interaction in Context Symposium, 365-368.
Zhu, Weizhong, and Chen, Chaomei. (2007). Storylines: Visual exploration and analysis in latent semantic spaces. Computers & Graphics, 31 (3), 338-349.