مطالعه وضعیت بهره‌وری، کارایی و نفوذ علمی پژوهشگران در حوزه داده‌های پیوندی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، علم اطلاعات و دانش‌شناسی، گروه علم اطلاعات و دانش‌شناسی، واحد بابل، دانشگاه آزاد اسلامی، بابل ،ایران.

2 استادیار، گروه علم اطلاعات و دانش‌شناسی، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران .

چکیده

هدف: سنجش بهره‌وری، کارایی و نفوذ علمی پژوهشگران حوزه داده‌های پیوندی است.
روش‌شناسی: پژوهش حاضر از نظر هدف کاربردی است که با تکنیک‌های رایج در مطالعات علم‌سنجی و به روش هم‌نویسندگی و تحلیل شبکه انجام شد. جامعه پژوهش شامل مقاله‌های حوزه داده‌های پیوندی است که در وب‌گاه علوم طی بازه 1983 تا 2019 نمایه شده است.
یافته‌ها: "Bizer C” و "Berners-Lee T" از لحاظ بهره‌وری و کارایی و شاخص‌های نفوذ اجتماعی و اندیشه‌ای اثرگذارترین پژوهشگران این حوزه هستند. در شبکه هم‌نویسندگی، "Auer S‌" و "Klyne G" بالاترین مرکزیت رتبه، "Fellegi I" و "Zhang Y" بالاترین مرکزیت نزدیکی، و "Fellegi I” و "Rubin D" دارای بالاترین مرکزیت بینابینی بودند. پژوهشگران با کارایی بالا از مرکزیت بهتر و با بهره‌وری بالا از مرکزیت رتبه و بینابینی خوبی برخوردارند. تأثیر نفوذ اجتماعی بر نفوذ اندیشه‌ای و انتشاراتی، و تأثیر نفوذ انتشاراتی بر اندیشه‌ای مثبت ارزیابی شد.
نتیجه‌گیری: وضعیت مطلوب پژوهشگران از نظر بهره‌وری و کارایی و نمرات بالای آنها در شاخص‌های مرکزیت رتبه و بینابینی می‌تواند نشان‌دهنده نفوذ مؤثر علمی آنها در این حوزه باشد. همچنین تأثیر مثبت و معنادار روابط سه‌گانه مدل نفوذ علمی نیز این مسئله را تأیید می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Studying the Status of Productivity, Efficiency, and Scientific Influence of Researchers in the Field of Linked Data

نویسندگان [English]

  • Roghayeh Ghorbani Bousari 1
  • Mitra Ghiasi 2
  • Seyed Aliasghar Razavi 2
1 Ph.D. Candidate, Department of Knowledge and Information Science, Babol Branch, Islamic Azad University, Babol, Iran.
2 Assistant Professor, Department of Knowledge and Information Science, Babol Branch, Islamic Azad University, Babol, Iran.
چکیده [English]

Purpose: Linked data was developed and introduced as the best practice for publishing and linking structured data on the Web. In studies related to the scientific collaboration network, which is defined by co-authorship relationships, Social Network Analysis (SNA) is applied. Identifying influential researchers in co-authorship networks across different scientific fields can be considered one of the goals of scientometric studies. The purpose of the current research is to determine the productivity and efficiency of researchers in the field of linked data. Additionally, it aims to identify and analyze the most influential researchers in linked data using the Scholarly Influence Model.
 
Methodology: The current research is an applied study and has been conducted using common techniques in Scientometrics, specifically co-authorship and network analysis methods. To obtain the primary data, the keyword "Linked data" was searched in the Web of Science Database, which contains 4612 records from 1983 to 2019. The data was saved in plaintext format and then processed by Bibexcel software. Based on co-authorship, the number of unique researchers was determined to be 48,643. The names of the researchers were transferred from Bibexcel to Excel software and sorted alphabetically. Then, they were edited, modified, and unified into preferred names. In the following, Bradford's Law was applied to determine the sample size with a cutoff of 38 in order to facilitate easier analysis in the co-authorship network. The sample size was determined to be 174 researchers. BibExcel has been used to calculate the productivity (number of articles), efficiency (number of citations), and H-index of the researchers. After creating a co-authorship matrix of researchers in BibExcel, it was converted into a correlation matrix using UCINET in order to calculate the degree, betweenness, and closeness centrality. In addition, the g-index and hc-index of 174 researchers were manually calculated using Excel software. Next, the relationship between productivity and efficiency, as well as the impact of social and environmental influences on ideational influence, were investigated using Lisrel Software.
 
Findings: The findings showed that Bizer C. and Berners-Lee T. are considered to be the most influential researchers in the field of linked data, with the highest productivity and efficiency. In terms of co-authorship, "Auer S" and "Klyne G" have the highest degree centrality. In terms of closeness centrality, "Fellegi I" and "Zhang Y" have the highest scores, while "Fellegi I" and "Rubin D" have the highest scores in betweenness centrality. Regarding the hypotheses, there is a significant relationship between the productivity and efficiency of researchers in the field of linked data. Also, the findings showed that higher productivity is associated with higher betweenness and degree centrality. However, there is no significant relationship between closeness centrality score. Specifically, "Bizer C", "Berners-Lee T", "Hogan A", and "Auer S" have the highest scores in the indicators of social and ideational influences. Furthermore, it was found that social influence has a positive effect on venue and ideational influence, meaning that researchers with higher social influence also have higher venue and ideational influence. In addition, social influence has a positive effect on ideational influence, meaning that researchers with higher social influence also possess higher ideational influence.
 
Conclusion: The favorable status of researchers in terms of productivity and efficiency, as well as their high scores in the indicators of degree and betweenness centrality in the co-authorship network, can indicate their significant scientific influence in this field. This finding confirms the positive and significant impact of triple relationships in the Scholarly Influence Model. Generally, the results can provide a deeper understanding of the quantitative and qualitative status of scientific publications and leading researchers in this field. Using a combination of productivity and efficiency indicators, along with the components of the Scholarly Influence Model, can help identify top researchers in each scientific field.

کلیدواژه‌ها [English]

  • productivity
  • linked data
  • efficiency
  • Scholarly Influence Model
امینی‌نیا، ی. (1396). تحلیل ساختار علمی برون‌دادهای حوزه سردردهای ضربان دار با استفاده از مدل نفوذ علمی [پایان‌نامه کارشناسی ارشد منتشر نشده].، دانشگاه رازی.
باشکوه، ا.، اکرامی، م.، سهیلی، ف.، و کریمی، ا. (1398). مصورسازی شبکه اجتماعی هم‌تألیفی و مطالعه روابط بین سنجه‌های مرکزیت با بهره‌وری علمی و کارایی پژوهشگران حوزه آموزش از دور. فصلنامه علمی پژوهشی تدریس پژوهی، 7 (1)، 65-86. https://doi.org/10.34758/J012.2019.185
تاج‌الدینی، ا.، سهیلی، ف.، و سادات‌موسوی، ع. (1398). سنجه‌های مرکزیت در شبکه‌های هم‌نویسندگی: هم‌افزایی یا هم‌زدایی در عملکرد پژوهشی پژوهشگران. فصلنامه پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک)، 34 (3)، 1452-1423. https://doi.org/10.35050/JIPM010.2019.044 
حاضری، ا.، مکی‌زاده، ف.، سهیلی، ف.، و زارع زردینی، ز. (1401). مطالعه رابطه نفوذ اجتماعی با بهره‌وری و کارایی در بین پژوهشگران حوزه مدیریت دانش از دیدگاه علم‌سنجی. علوم و فنون مدیریت اطلاعات، (انتشار آنلاین از تاریخ 05 خرداد ).https://doi.org/10.22091/stim.2021.6878.1572
حسن‌زاده، پ.، اسفندیاری‌مقدم، ع،ر.، سهیلی، ف.، و موسوی‌چلک، ا (1397). هم‌نویسندگی و رابطه بین نفوذ اجتماعی و میزان کارایی و بهره‌وری پژوهشگران حوزه نارسایی مزمن قلب و عروق. پژوهش‌نامه علم‌سنجی، 4 (8)، 143-160.  https://doi.org/10.22070/rsci.2018.617
     حسینی، ا.، غائبی، ا.، و برادر، ر. (1400). کتاب‌سنجی و نگاشت هم‌رخدادی واژگان در حوزه داده‌های پیوندی. پژوهش‌نامه علم‌سنجی، 7 (13)، 91-116. https://doi.org/10.22070/rsci.2020.4904.1333
حسینی بهشتی، م.، خوئینی، س.، و اسمعیل پونکی. (1400). مطالعه کتاب‌سنجی و تحلیل شبکه هم‌نویسندگی و خوشه‌های موضوعی پژوهش‌های هستان‌شناسی. پژوهش‌نامه علم‌سنجی،  دوره 9، شماره 1، (بهار و تابستان )، شماره پیاپی 17. https://doi.org/10.22070/rsci.2021.14558.1500   
     خاصه، ع. (1394). ساختار دانش در حوزه مطالعات‌سنجشی: مطالعه هم‌استنادی، هم‌نویسندگی، و هم‌واژگانی تولیدات علمی بر اساس رویکردهای تحلیل شبکه و دیداری‌سازی علم [رساله  دکتری منتشر نشده]. دانشگاه پیام نور مشهد.
دانش، ف.، و قویدل، س. (140۲). یک قرن مشارکت علمی پژوهشگران بروسلا و بروسلوز: مطالعه علم‏سنجی. پژوهش‌نامه علم‌سنجی، ۹(۱)، (بهار و تابستان)، ۳۱۳-۳۴۰. https://doi.org/10.22070/rsci.2021.14770.1514
    رجب‌زاده، س.، اکرامی، م.، سهیلی، ف.، و ملکی، ح. (1398). ارزیابی پژوهش در حوزه مطالعات آموزش از راه دور با استفاده از مدل سرمایه علمی. مطالعات کتابداری و علم اطلاعات، 12 (1).
سهیلی، ف.، توکلی‌زاده راوری، م.، حاضری، ا.، و دوست‌حسینی، ن. (1397). ترسیم نقشه علم. تهران: دانشگاه پیام نور. 230 ص.
سهیلی، ف.، شریف‌مقدم، ه.، موسوی چلک، ا.، و خاصه، ع، ‌ا. (1394). تأثیرگذارترین پژوهشگران در حوزۀ آی‌متریکس: نگاهی ترکیبی به شاخص‌های تأثیرگذاری. تحقیقات کتابداری و اطلاع‌رسانی دانشگاهی، 49 (1)، 23-54. 10.22059/JLIB.2015.56962 ‌https://doi.org/
سهیلی، ف.، شریف‌مقدم، ه.، موسوی چلک، ا.، و خاصه، ع، ا (1395). ارزیابی پژوهش‌های آی‌متریکس با استفاده از مدل نفوذ علمی. پژوهشنامه پردازش و مدیریت اطلاعات، 32 (1)، 50-25. https://doi.org/10.35050/JIPM010.2016.018
شبانکار، خ.، باغ جنتی، م.، و حمیدی، ع. (1396). ارزیابی عملکرد پژوهشی اعضای هیئت علمی دانشگاه علوم پزشکی بوشهر در پایگاه استنادی گوگل اسکالر طی سال‌های 2009-2013، فصلنامه دانش‌شناسی، 10 (39)، 57-67. https://qje.ntb.iau.ir/article_545292.html
شکفته، م.، و کریمی، م. (1397). نقشه‌های علمی: ترسیم و تحلیل ترسیم همراه با آموزش نرم‌افزارهای ان. دبلیو. بی.، سایت‌اسپیس، کفی و هیست‌سایت. تهران: کتابدار. 178 ص.
زارعی، م. (1396). بررسی نفوذ اندیشه‌ای پژوهشگران در حوزه پزشکی هسته‌ای با استفاده از شاخص‌های ارزیابی تولیدات علمی در پایگاه وب آو ساینس [پایان‌نامه کارشناسی ارشد منتشر نشده]. دانشگاه علوم پزشکی کرمان.
غفاریان سخنور، ز.، حسینقلی‌زاده، ر.، و نوغانی دخت‌بهمنی، م. (1394). کاربرد تحلیل شبکه اجتماعی در مدیریت سرمایه‌های دانشی سازمان، [هشتمین کنفرانس ملی و دومین کنفرانس بین المللی مدیریت دانش تهران].
فولادیان، م.، و محمداسماعیل، ص. (1398). بررسی شبکه همکاری اعضای هیئت علمی پژوهشگاه‌های فنی و مهندسی وزارت علوم، تحقیقات و فناوری در شهر تهران: بازه زمانی 2011 تا 2015 پژوهش‌نامه علم‌سنجی، 5 (9)، 260-241. https://doi.org/10.22070/rsci.2018.715   
قربانی بوساری، ر.، قیاسی، م.، و رضوی، ع، ‌ا. (1400). مرور نظام‌مند پژوهش‌های داده‌های پیوندی. مطالعات کتابداری و سازمان‌دهی اطلاعات. 32 (2)،105-123.  https://doi.org/10.30484/nastinfo.2021.2821.2034   
قویدل، س.، نوذر، س.، و ریاحی‌نیا، ن. (1400). بروسلوز: شبکه هم‌نویسندگی پژوهشگران با استفاده از شاخص‏های مرکزیت. مجله دانشکده پزشکی دانشگاه علوم پزشکی مشهد. 64(2).  https://doi.org/10.22038/mjms.2021.18516    
مرادی‌مقدم، ح.، خادمی، ر.، و کشاورز، ح. (1398). بررسی برون دادها و ترسیم شبکه هم‌نویسندگی محققان دانشگاه سمنان در نمایه‌های استنادی وب آو ساینس. مطالعات کتابداری و علم اطلاعات. 11 (1)، 137-156. https://doi.org/10.22055/slis.2017.21535.1325    
مصطفوی، ا.، اسمعیل پونکی، ا.، و خوئینی، س. (1400). الگوهای هم‌نویسندگی و روندهای موضوعی مدارک علمی تولیدشده توسط پژوهشگران علم روان‌شناسی دانشگاه‌های شهر تهران در پایگاه اطلاعاتی وب‌ آو ساینس. پژوهش‌نامه علم‌سنجی. 7 (13)، 183-202. https://doi.org/10.22070/rsci.2020.4987.1340
مکی‌زاده، ف.، توکلی‌زاده راوری، م.، و سعادت، ف. (1399). رابطه بین شاخص‌های استنادی و دسته‌بندی نشریات به روش برادفورد مطالعه موردی: نشریات حوزه ناباروری. مطالعات کتابداری و علم اطلاعات، 12 (1)، 1-16. https://doi.org/10.22055/SLIS.2020.27824.1548
مکی‌زاده، ف.، دهقان، آ.، و مصطفوی، ا. (1399). بررسی رابطه بین نفوذ اجتماعی، بهره‌وری و کارایی در شبکه هم‌نویسندگی پژوهشگران حوزه اخلاق پزشکی. اخلاق و تاریخ پزشکی، 13 (1)، 252-240.https://ijme.tums.ac.ir/article-6177.xml
موسوی چلک، ا.، سهیلی، ف.، و خاصه، ع، ‌ا. (1396). رابطه بین نفوذ اجتماعی و بهره‌وری و کارایی در شبکه اجتماعی هم‌نویسندگی پژوهشگران علوم قرآن و حدیث ایران. کتابداری و اطلاع‌رسانی، 20 (3)، 50-74. https://ensani.ir/fa/article/446908/
نجف‌پور مقدم، پ.، و فاضلی، س. (1399). تحلیل شبکه هم‌نویسندگی برون‌دادهای علمی کشور ایران در حوزه پرستاری در پایگاه Web of Science. مدیریت اطلاعات سلامت، 17 (3)، 132-125.‌https://doi.org/10.22122/himv17i3.4085 
نوچه ناسار، ح، ر.، شمس مورکانی، غ، ر.، و قانعی‌راد، م، ا. (1401). تحلیل شبکه اجتماعی هم‌تألیفی مقالات داخلی اعضای هیئت علمی رشته علوم تربیتی دانشگاه‌های دولتی شهر تهران. پژوهش‌نامه علم‌سنجی. ۸(2)، (پیاپی ۱۶)، (پاییز و زمستان). https://doi.org/10.22070/rsci.2021.13493.1455
هدایتی، م. (1396). مطالعه نفوذ علمی نویسندگان مقالات مرتبط با کتابخانه‌های عمومی در پایگاه وب آو ساینس [پایان‌نامه کارشناسی ارشد منتشر نشده]. دانشگاه یزد.
 
Abramo, G., & D’Angelo, C.A. (2014). How do you define and measure research productivity? Scientometrics101(2), 1129-1144. ‌https://doi.org/10.1007/s11192-014-1269-8  
Amininiya, Y. (2018). Analysis of scientific structure of Throbbing Headaches using Scholarly Influence Model [Unpublished master dissertation]. University of Razi. 126p. [In Persian].
Bashokoh, A., Ekrami, M., Sohaili, F., & Karimi, A. (2019). Visualization of Co-Authorship Social Network and Study of Relationships Between Centrality Metrics with Scientific Productivity and Performance of researchers in Distance Education Researcher. Research in Teaching7(1), 60-80. ‌https://doi.org/10.34785/J012.2019.185  [In Persian].
Bell, M. F., Bayliss, D. M., Glauert, R., & Ohan, J. L. (2018). Using linked data to investigate developmental vulnerabilities in children of convicted parents. Developmental Psychology, 54(7), 1219–1231.  ‌https://doi.org/https://doi.org/10.1002/asi.24140
Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data: The Story So Far. International Journal on Semantic Web and Information Systems (IJSWIS), 5 (3), 1-22. https://doi.org/10.4018/jswis.2009081901              
Candela, G., Escobar, P., Carrasco, R. C., & Marco-Such, M. (2020). Evaluating the quality of linked open data in digital libraries. Journal of Information Science, 1-23. https://doi.org/10.1177/0165551520930951   
Cuellar, M. J., Vidgen, R., Takeda, H., & Truex, D. (2016). Ideational influence, connectedness, and venue representation: Making an assessment of scholarly capital. Journal of the Association for Information Systems, 17(1), 1-28. ‌https://doi.org/10.17705/1jais.00419
Danesh, F., & GhaviDel, S. (2023). A Century of Scholarly Collaboration by Brucella and Brucellosis Researchers: A Scientometric Study. Scientometrics Research Journal, 9(1), spring & summer), 313-340. https://doi.org/10.22070/rsci.2021.14770.1514 [In Persian].
De Paula, E.V., Martins, M.S., De Lorenzo, A.L.B., Duarte, B.K.L., Rezende, S.M., & Costa, F. F. (2023). The landscape of hematology research in Brazil: an analysis of data from citation databases. Hematology, Transfusion and Cell Therapy, 45(52), (July), S57-S67. https://doi.org/10.1016/j.htct.2022.02.001
Desimoni, F., & Po, L. (2020). Empirical evaluation of Linked Data visualization tools. Future Generation Computer Systems, 112, 258–282. https://doi.org/10.1016/j.future.2020.05.038    
Eddamiri, S., Zemmouri, E. M., & Benghabrit, A. (2019). An improved RDF data clustering algorithm. Procedia computer science148, 208-217. https://doi.org/10.1016/j.procs.2019.01.038
Egge, L. (2006). Theory and practice of the g-index. Scientometrics, 69(1), 131-152. https://doi.org/10.1007/s11192-006-0144-7
Fonseca, B.d., Sampaio, R.B., Fonseca, M.V.d., & Zicker, F. (2016). Co-authorship network analysis in health research: method and potential use. Health Res Policy Sys, 1434. https://doi.org/10.1186/s12961-016-0104-5
Fouladian, M., & MohamadEsmaeil, S. (2019). Investigation of the Collaboration Network of the Faculty Members of the Technical and Engineering Research Institute of the Ministry of Science, Research and Technology in Tehran: 2011-2015. Scientometrics Research Journal, 5(9), 241-260.  https://doi.org/10.22070/rsci.2018.715 [In Persian].
Gallivan, M., & Ahuja, M. (2015). Co-authorship, Homophily, and Scholarly Influence in Information Systems Research. Journal of the Association for Information Systems, 16(12), 2.  https://doi.org/10.17705/1jais.00416
Ghafarian Sokhanvar, Z., Hosseingholizadeh, R., & Noghani DokhtBahmani, M. (2014). The function of social network analysis in managing knowledge capitals of organization. [The 8th National Conference and the 1st International Conference on Knowledge Management].  [In Persian].
Ghaleb, H., Alhajlah, H.H., Bin Abdullah, A.A., Kassem, M.A., & Al-Sharafi, M.A. (2022). A Scientometric Analysis and Systematic Literature Review for Construction Project Complexity. Buildings12(4), 482. https://doi.org/10.3390/buildings12040482
Ghavidel, S., Nozar, S., & Riahinia, N. (2021). Brucellosis: researchers' co-authorship network using centrality indicators. medical journal of mashhad university of medical sciences, 64(2). ‌https://doi.org/10.22038/mjms.2021.18516 [In Persian].
Ghorbani Bousari, R., Ghiasi, M., & Razavi, S. (2021). Linked Data Research Literature: A Systematic Review. Librarianship and Information Organization Studies, 32(2), 105-123. https://doi.org/10.30484/nastinfo.2021.2821.2034 [In Persian].
Gupta, B.M., Dhawan, S.M., Singh, N.K., & Kumar, A. (2020). Linked data: A Scientometrics assessment of global publications output during 1996-2019. International Journal of Information Dissemination and Technology, 10(1), 62. https://doi.org/10.5958/2249-5576.2020.00010.2
HabibAgahi, M. R., Kermani, M. A. M. A., & Maghsoudi, M. (2022). On the Co-authorship network analysis in the Process Mining research Community: A social network analysis perspective. Expert Systems with Applications206, 117853. https://doi.org/10.1016/j.eswa.2022.117853
Hasanzadeh, P., Isfandyari-Moghaddam, A., Soheili, F., & Mousavi Chalak, A. (2018). Co-authorship and the Relationship between So-ial Influence and the Extent of Effectiveness and Productivity of Re-searchers in Domain of Chronic Cardiovas-cular Failure. Scientometrics Research Journal, 4(8), 143-160. https://doi.org/10.22070/rsci.2018.617 [In Persian].
Hazeri, A., Makkizadeh, F., Soheili, F., & Zare Zardeini, Z. (2022). Study of the Relationship between Social Influence, Productivity and Performance amongst Researchers in the Field of Knowledge Management from a Scientometric Perspective. Sciences and Techniques of Information Management. https://doi.org/10.22091/stim.2021.6878.1572 [In Persian].
Hedayati, M. (2017). A Study of Authors Scholary Influence on Papers Related to Public Libraries in Web of Science [Unpublished master Dissertation]. University of Yazd. [In Persian].
Hess, D. J., (1997). Science Studies: An Advanced Introduction. New York: NYU Press. Supplemental Web Lecture 4: Expertise, Policy, and Publics. 206P.
Hoseini Beheshti, M., khoeini, S., & Esmaeil Pounaki, E. (2021). Bibliometric Study and Network Analysis of Co-authorship and Thematic Clusters of Ontological Research. Scientometrics Research Journal. Volume 9, (Issue 1, spring & summer) - Serial Number 17, March. https://doi.org/10.22070/rsci.2021.14558.1500 [In Persian].
Hosseini, E., Ghaebi, A., & Baradar, R. (2021). Bibliometrics and Mapping of Co-words in the Field of Linked Data. Scientometrics Research Journal7(13), 91-116. https://doi.org/‌10.22070/rsci.2020.4904.1333 [In Persian].
Ji, X., Chun, S. A., Cappellari, P., & Geller, J. (2017). Linking and using social media data for enhancing public health analytics. Journal of Information Science, 43(2), 221–245. https://doi.org/10.1177/0165551515625029
Jiang, Y., Yang, M., & Qu, R. (2019). Semantic similarity measures for formal concept analysis using linked data and WordNet. Multimedia Tools and Applications, 78(14), 19807-19837. ‌https://doi.org/10.1007/s11042-019-7150-2
Kessler, C., d’Aquin, M., & Dietze, S. (2013). Linked data for science and education. Journal of Semantic Web, 4(1), 1–2. https://doi.org/10.3233/SW-120091
Khalagi, K., Mansourzadeh, M. J., Aletaha, A., Yarmohammadi, H., Atlasi, R., Banar, S., ... & Ostovar, A. (2021). Co-authorship network analysis of Iranian researchers on osteoporosis. Archives of osteoporosis16, 1-12.‌ ‌https://doi.org/10.1007/s11657-021-00914-9
Khasseh, A. A. (2016). Knowledge Structure in Metric Studies: Analysis of Co-citations, Co-authorships, and Co-words of Records Using Network Analysis and Science Visualization [Unpublished master Dissertation]. University of Payame Noor, Mashhad branch. [In Persian].
Kyaw, A, T, Z., & Wang, Z. (2018). Mapping the Intellectual Structure of the Linked Data Field: A Co-Word Analysis and Social Network Analysis, International Journal of Advanced Research in Science, Engineering and Technology, 5(8), 6632-6647. https://www.semanticscholar.org/paper/
Larivière, V., & Costas, R. (2016). How Many Is Too Many? On the Relationship between Research Productivity and Impact. PLOS ONE, 11(9), e0162709. ‌https://doi.org/ 10.1371/journal.pone.0162709 
Li, K., Rollins, J., & Yan, E. (2018). Web of Science Use in Published Research and Review Papers 1997–2017: A Selective, Dynamic, Cross-Domain, Content-Based Analysis. Scientometrics, 115, 1–20.  https://doi.org/10.1007/s11192-017-2622-5
Lu, H., & Feng. Y. (2009). A measure of author’s centrality in co-authorship networksbased on the distribution of collaborative relationships. Scientometrics, 81 (2), 499-511. ‌https://doi.org/10.1007/s11192-008-2173-x
Makkizadeh, F., Dehghan, A., & Mostafavi, E. (2020). Investigating Association between Social influence, Productivity, and Performance in Co-author Network of Researchers in Medical Ethics. Iranian Journal of Medical Ethics and History of Medicine13(1), 240-252. [In Persian].
Makkizadeh, F., tavakolizadehravari, M., & Saadat, F. (2020). The Relationship between Citation Indicators and Category of Journals by the Bradford Method, Case Study: Journal of Infertility. Journal of Studies in Library and Information Science, 12(1), 1-16. https://doi.org/10.22055/slis.2020.27824.1548 [In Persian].
 Martinez-Rodriguez, J. L., Lopez-Arevalo, I., & Rios-Alvarado, A. B. (2020). Mining information from sentences through Semantic Web data and Information Extraction tasks. Journal of Information Science.  ‌https://doi.org/10.1177/0165551520934387
Mastora, A., Peponakis, M., & Kapidakis, S. (2017). SKOS concepts and natural language concepts: An analysis of latent relationships in KOSs. Journal of Information Science, 43(4), 492–508. https://doi.org/10.1177/0165551516648108
Mingers, J., Macri, F., & Petrovici, D. (2012). Using the h-index to measure the quality of journals in the field of business and management. Information Processing & Management48(2), 234-241. https://doi.org/10.1016/j.ipm.2011.03.009
Moradimoghadam, H., Khademi, R., & Keshavarz, H. (2019). Studying the outputs and mapping the co-author network of Semnan University researchers in the Web of Science Indexes. Journal of Studies in Library and Information Science, 11(1), 137-156. https://doi.org/10.22055/slis.2017.21535.1325 [In Persian].
Mostafavi, I., Esmaeil Pounaki, E., & Khoieni, S. (2021). Co-authoring Patterns and Subject Trends of Scientific Documents Produced by Psychology Researchers at Universities of Tehran City in Web of Science Database. Scientometrics Research Journal, 7(13), 183-202. https://doi.org/10.22070/rsci.2020.4987.1340 [In Persian].
Mousavi Chalak, A., Sohieli, F., & Khasseh, A.A. (2017). The relationship between social influence with productivity and performance in co-authorship social network of Quran and Hadith studies. Library and Information Sciences, 20(3), 50-74. [In Persian].
Najafpour Moghadam, P., & Fazely, S. (2018). Analyzing the Co-authoring Network of Iranian Scientific Outputs in the field of Nursing in Web of Science Database. Health information management 2020. 17(3), 125-32. https://doi.org/10.22122/him. v17i3.4085 [In Persian].
Narock, T., & Wimmer, H. (2017). Linked data scientometrics in semantic e-Science. Computers & Geosciences100, 87-93. https://doi.org/10.1016/j.cageo.2016.12.008
Niknia, M., & Mirtaheri, S.L. (2015). Mapping a decade of linked data progress through co-word analysis. Webology, 12(2), 1-14. https://www.researchgate.net/publication/301633071_Mapping_a_decade_of_linked_data_progress_through_co-word_analysis
Noche Nasar, H. R., Shams, G. R., & Ghanei Rad, M. A. (2022). Analysis of the Social Network of Co-Authorship of Internal Articles of Faculty Members in the Field of Educational Sciences of Governmental Universities in Tehran. Scientometrics Research Journal, 8(2), (Autumn & Winter)), 31-52. https://doi.org/‌10.22070/rsci.2021.13493.1455 [In Persian].
Nunes da Silva A, Junior., Breve, MM., Mena-Chalco, JP., & Lopes, F.M. (2022). Analysis of co authorship networks among Brazilian graduate programs in computer science. PLoS ONE, 17(1). ‌https://doi.org/10.1371/journal.pone.0261200
Ong, E., Xiang, Z., Zhao, B., Liu, Y., Lin, Y., Zheng, J., & He, Y. (2017). Ontobee: a linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic acids research, 45(D1), D347-D352. https://doi.org/10.1093/nar/gkw918
Ortiz Vivar, J., Segarra, J., Villazón-Terrazas, B., & Saquicela, V. (2020). REDI: Towards knowledge graph-powered scholarly information management and research networking. Journal of Information Science, 1-15. https://doi.org/10.1177/0165551520944351                                                                 
Popp, J., Balogh, P., Oláh, J., Kot, S., Harangi Rákos, M., & Lengyel, P. (2018). Social network analysis of scientific articles published by food policy. Sustainability10(3), 577. https://doi.org/10.3390/su10030577
Quezada-Sarmiento, P. A., Enciso, L., Conde, L., Mayorga-Diaz, M. P., Guaigua-Vizcaino, M. E., Hernandez, W., & Washizaki, H. (2020). Body of Knowledge Model and Linked Data Applied in Development of Higher Education Curriculum. [In S. Kapoor, & K. Arai (Eds.), Advances in Computer Vision - Proceedings of the 2019 Computer Vision Conference CVC]. 758-773 (Advances in Intelligent Systems and Computing; V.943), Springer Verlag. ‌https://doi.org/10.1007/978-3-030-17795-9_57
Quinn, C. (2020). Building automation system:  BIM integration using a linked data structure. Automation in Construction,‌ 118, 103257. https://doi.org/10.1016/j.autcon.2020.103257
Rahimi, S., Soheili, F., & Amininia, Y. (2020). Social Influence, Research Productivity and Performance in the Social Network Co-authorship: A Structural Equation Modelling.  Journal of Scientometric Research, 9(3), 326-334. https://doi.org/10.5530/jscires.9.3.40
Rajabi, E., Sicilia, M.-A., & Sanchez-Alonso, S. (2014). An empirical study on the evaluation of interlinking tools on the Web of Data. Journal of Information Science, 40(5), 637–648. https://doi.org/10.1177/0165551514538151
     Rajabzadeh, S., Ekrami, M., Soheili, F., & Ahmadi, H. (2020). An evaluation of distance education researchs by scholarly influence model. Journal of Studies in Library and Information Science, 12(1).  https://doi.org/10.22055/slis.2018.25510.1474 [In Persian].
Rico, M., Vila-Suero, D., Botezan, I., & Gómez-Pérez, A. (2019). Evaluating the impact of semantic technologies on bibliographic systems: A user-centred and comparative approach. Journal of Web Semantics59, 100500. https://doi.org/10.1016/j.websem.2019.03.001
Sakr, S., Wylot, M., Mutharaju, R., Le Phuoc, D., & Fundulaki, I. (2018).  Linked Data: Storing, Querying, and Reasoning. Switzerland: Springer International Publishing, 223P.
Salamati, P., & Soheili, F. (2016). Social network analysis of Iranian researchers in the field of violence. Chinese journal of traumatology19(5), 264-270. https://doi.org/10.1016/j.cjtee.2016.06.008
Sánchez-Cervantes, J. L., Alor-Hernández, G., Paredes-Valverde, M. A., Rodríguez-Mazahua, L., & Valencia-García, R. (2021). NaLa-Search: A multimodal, interaction-based architecture for faceted search on linked open data. Journal of Information Science47(6), 753 769.  https://doi.org/10.1177/0165551520930918
Shabankar, K., Baghjannati, M., & Hamidi, A. (2017). Evaluation of faculty members Research performance at Bushehr University of Medical Sciences in Google Scholar during 2009-2013. Journal of Knowledge Studies, 10(39), 57-67. https://qje.ntb.iau.ir/article_545292.html [In Persian].
Shekofteh, M., & Karimi, M. (2017). Scientific Maps: Visualizing and analyzing. Tehran: Ketabdar. 178p. [In Persian].
Soheili, F., Khasseh, A. A., & Mousavi Chelak, A., Tavakolizadeh Ravari, M. (2018). An evaluation of information behaviour studies through the Scholarly Capital Model. Learned Publishing31(2), 121-129.   https://doi.org/10.1002/leap.1129
Soheili, F., Sharif Moghaddam, H., Mousavi Chelak, A., & Khasseh, A. A. (2015). The most influential researchers in iMetrics: A compound look at influence indicators. Academic Librarianship and Information Research49(1), 23-54. https://doi.org/10.22059/jlib.2015.56962 [In Persian].
Soheili, F., Sharif Moghaddam, H., Mousavi Chelak, A., & Khasseh, A. A. (2016). An evaluation of iMetric studies through the scholarly influence model. Iranian journal of information processing and management32(1), 25-50. https://doi.org/ 10.35050/JIPM010.2016.018 [In Persian].
Soheili, F., Tavaklizadeh Raori, M., Hazeri, A., & Dost Hosseini, N. (2018). Mapping of science. Tehran: University Of Payame Noor, 230p. [In Persian].
Stefano, D.D., Giordano, G., & Vitale, M.P. (2011). Issues in the analysis of co-authorship networks. Quality & Quantity, 45(5),1091-1107. https://doi.org/10.1007/s11135-011-9493-2
Suzuki, H. (2012). Google Scholar metrics for publications. Google Scholar Blog. Available at: https://scholar.googleblog.com/2012/04/google-scholar-metrics-for-publications.html
Tajedini, O., Soheili, F., & Sadatmoosavi, A. (2019). The centrality measures in co-authorship networks: synergy or antagonism in researchers’ research performance. Iranian Journal of Information Processing & Management34(3), 1423-1452. ‌https://doi.org/ 10.35050/JIPM010.2019.044 [In Persian].
Takeda, H. (2011). Examining Scholarly Influence: A Study in Hirsch Metrics and Social Network Analysis [Unpublished PhD Dissertation]. Georgia State University, Atlanta.
Teng, J., Bentley, C., Burgess, M. M., O'Doherty, K. C., & McGrail, K. M. (2019). Sharing linked data sets for research: results from a deliberative public engagement event in British Columbia, Canada. International journal of population data science4(1), 1103. https://doi.org/10.23889/ijpds.v4i1.1103
Truex, D., Cuellar, M., Takeda, H., & Vidgen, R. (2011). The scholarly influence of Heinz Klein: ideational and social measures of his impact on IS research and IS scholars. European Journal of Information Systems, 20(4), 422 – 439. https://doi.org/10.1057/ejis.2011.16
Wu, X., Cao, W., Wang. J., Zhang, Y., Yang, W., & Liu, Y. (2022). A spatial interaction incorporated betweenness centrality measure. PLoS ONE, 17(5): e0268203.                 https://doi.org/10.1371/journal.pone.0268203
Xu, Z., & Pekelis, L. B. (2015). A survey of Chinese Interpreting Studies: Who influences who… and why? PeerJ Computer Science1, e14. https://doi.org/10.7287/peerj.preprints.941v2
Zarei, M. (2017). Investigating the thought influence of researchers in Nuclear Medicine using the assessment indicators of scientific productions in Web of Science [Unpublished master Dissertation]. Kerman University of Medical Sciences. [In Persian].
Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S., & Hitzler, P. (2015). Quality assessment for Linked Data: A Survey. Semantic Web, 7(1), 63–93.  https://doi.org/10.3233/SW-150175 
Zhang, B., Ahmad, W., Ahmad, A., Aslam, F., & Joyklad, P. (2022). A scientometric analysis approach to analyze the present research on recycled aggregate concrete. Journal of Building Engineering46, 103679. https://doi.org/10.1016/j.jobe.2021.103679
Zuckerman, H. (1987). Citation analysis and the complex problem of intellectual influence. Scientometrics12(5), 329-338. https://doi.org/10.1007/BF02016675