مصورسازی روندها و موضوعات داغ حوزه بهره وری علمی نویسندگان

نوع مقاله : مقاله پژوهشی

نویسنده

دکتری علم اطلاعات و دانش شناسی، استادیار دانشکده علوم تربیتی و روانشناسی، دانشگاه اصفهان، اصفهان، ایران.

چکیده

هدف: مهم‌ترین هدف پژوهش حاضر بررسی و مصورسازی روندها و موضوعات داغ حوزة بهره‌وری علمی نویسندگان است.
روششناسی: پژوهش از نظر هدف، کاربردی بوده و با رویکرد علم‌سنجی با استفاده از ترسیم نقشه‌های دانش انجام شده‌است. 6482 اثر از پایگاه «وب‌آوساینس» استخراج و با استفاده از نرم‌افزار «سایت‌اسپیس» مورد ارزیابی قرار گرفتند (2000-2022‌م.). شناسایی خوشه‌های مبتنی بر هم‌رخدادی واژگانی، شاخص‌های مرکزیت بینابینی و شکوفایی استنادی، و همچنین تحلیل روند تحولات تاریخی این حوزه انجام شد.
یافتهها: از تعداد 11 خوشه شناسایی شده خوشه‌های «شاخص-اچ»، «جنسیت» و «تأثیر پژوهشی» مهم‌ترین بوده‌اند. همچنین این آثار دو دوره شکوفایی استنادی را نشان دادند: 1. ارائه و ارزیابی «شاخص-اچ»؛ 2. ارزیابی  توسعه «ابزارهای موجود» در ارزیابی بهره‌وری علمی نویسندگان. داغ‌ترین موضوعات، «ارزیابی اجتماعات دانشگاهی؛ «شاخص‌های رتبه‌بندی نویسندگان»؛ و «تبادل دانش» هستند. تحولات بهره‌وری علمی نویسندگان از قاعده بهره‌وری علمی پدیدآورندگان لوتکا شروع شده و با معرفی «استنادات» توسط گارفیلد ادامه یافته‌است.
نتیجهگیری: بهره‌وری علمی نویسندگان، موضوعی مهم در استخدام، ترفیع و ارتقای جایگاه دانشگاهی و علمی افراد است. لذا، نتایج این پژوهش نه‌تنها برای متخصصان علم‌سنجی، بلکه برای تمام پژوهشگران حائز اهمیت است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Visualization of Trends and Hot Topics in Authors’ Scientific Productivity

نویسنده [English]

  • Mariam Keshvari
Ph.D of KIS, Assistant Professor, Department of Education and Psychology, University of Isfahan, Isfahan, Iran.
چکیده [English]

Purpose: One of the most important scientific components is the scientific productivity of authors. This concept, which does not have a clear definition in the literature, has been investigated in various researches. Also, the review of the literature shows the dispersion of the subject in this field. From the individual and personality characteristics of the authors to the role of environmental and social issues on scientific productivity, attention has been paid in this field. It is not known, correctly, what is the emphasis of the related literature? And which are the trends and the hot topics of this field? So, the main goal of the present study was to investigate and illustrate trends and hot topics that pertain to authors’ scientific productivity.
Methodology: The current research is practical in terms of purpose and has been carried out with a scientometric approach using knowledge mapping. To achieve this, 6482 publications from 2000 to 2022 were extracted from the Web of Science Core Collection database and analyzed using CiteSpace Software (Advanced version). In alignment with the study's objective, keyword co-occurrence (to identify clusters), betweenness centrality (to pinpoint research frontiers), and citation burstness (to highlight significant works, hot topics, and keywords in specific periods) indicators were utilized. Additionally, clustering was conducted. Finally, the historical developments and milestones of this field were analyzed through a timeline view.
Findings: Findings showed that out of the data extracted, 11 clusters with a density of 0.0438 and a harmonic mean of 0.4938 were identified - which indicates weak interconnections in the network. The most important clusters were “h-Index” (size=284), “gender” (size=244), and “research effects” (size=202). Other clusters related to authors’ scientific productivity included “technology transfer”, “social work education”, “social network analysis”, “academic promotion”, “incentive structure”, “references”, “teamwork”, and “scientometric analysis” based on their sizes. Hirsch’s work in 2005, with a value of 0.27, held the highest betweenness centrality. An analysis of works' citation burstiness suggested that the works in the scientific productivity domain had experienced two citation burstiness periods: the first period involved the presentation and evaluation of the “h-Index” (from 2000 to 2012), and the second period focused on the evaluation and development of “existing tools” to assess authors’ scientific productivity (from 2012 to 2022). The hot topics under study were “evaluating academic communities” (2000-2002), “authors’ ranking indicators” (2002-2018), and “knowledge exchange” (2018-2022). The subject of “knowledge exchange”, a new issue, focuses on international interactions, communications, and the social and economic effects of literature (in addition to their scientific effects). The history of authors’ scientific productivity began with Lotka's rule of works’ creators’ scientific productivity, followed by the introduction of “citations” as one of the most important evaluation criteria for authors’ scientific productivity, developed by Garfield. In addition to Hirsch’s work, other approaches, such as “mapping of science” software and “gender inequalities”, were used to trace the historical developments of scientific productivity.
Conclusion: According to the findings of the present research, the H-index remains the most crucial index for evaluating the scientific productivity of authors. Despite some flaws, this index claims to measure both the impact and quantity of scientific productivity of authors and is widely accepted by the scientific community. It indicates that as the number of works increases, the likelihood of receiving citations also increases, leading to enhanced scientific productivity. Given that the scientific productivity of authors, researchers, and university faculty members is vital for employment, it is imperative to enhance academic and scientific positions during employment processes. The results of this study could provide assistance to experts and researchers alike.
 

کلیدواژه‌ها [English]

  • Scientific productivity
  • Trends analysis
  • Hot topics
  • Authors
  • CiteSpace
صدیقی، م. (1393). بررسی کاربرد روش تحلیل هم‌رخدادی واژگان در ترسیم ساختار حوزه‌های علمی (مطالعه موردی حوزه علم‌سنجی). پردازش و مدیریت اطلاعات. 30(2)، 373-396. https://doi.org/10.35050/JIPM010.2015.040
مهدی‌زاده، م. (1401). فراتحلیل کیفی مقاله‌های علمی در زمینه بهره‌وری اعضای هیئت علمی در ایران. نامه آموزشعالی، 15(58)، 52-31. https://journal.sanjesh.org/article_254274.html
Abramo, G., & D’Angelo, C. A. (2014). How do you define and measure research productivity?. Scientometrics, 101, 1129-1144. https://doi.org/10.1007/s11192-014-1269-8
Abramo, G., D'Angelo, C., & Di Costa, F. (2008). Assessment of sectoral aggregation distortion in research productivity measurements. Research Evaluation, 17(2), 111-121. https://doi.org/10.3152/095820208X280916
Aksnes, D. W., Langfeldt, L., & Wouters, P. (2019). Citations, citation indicators, and research quality: An overview of basic concepts and theories. Sage Open, 9(1), 2158244019829575. https://doi.org/10.1177/2158244019829575
Alfirevic, N., Pavicic, J., & Rendulic, D. (2023). A bibliometric analysis of public business school scientific productivity and impact in South-east Europe (2017-2021). The South East European Journal of Economics and Business, 18(1), 27-45. https://doi.org/10.2478/jeb-2023-0003
Allison, P. D., & Long, J. S. (1990). Departmental effects on scientific productivity. American sociological review, 469-478. https://doi.org/10.2307/2095801
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Audretsch, D. B., Lehmann, E. E., & Wright, M. (2014). Technology transfer in a global economy. The Journal of Technology Transfer, 39, 301-312. https://doi.org/10.1007/s10961-012-9283-6
Baccini, A., Barabesi, L., Cioni, M., & Pisani, C. (2014). Crossing the hurdle: the determinants of individual scientific performance. Scientometrics, 101, 2035-2062. https://doi.org/10.1007/s11192-014-1395-3
Bak, H. J., & Kim, D. H. (2019). The unintended consequences of performance-based incentives on inequality in scientists’ research performance. Science and Public Policy, 46(2), 219-231. https://doi.org/10.1093/scipol/scy052
Baker, D. R. (1991). On-line bibliometric analysis for researchers and educators. Journal of Social Work Education, 27(1), 41-47. https://doi.org/10.1080/10437797.1991.10672168
Ball, P. (2005). Index aims for fair ranking of scientists. Nature, 436(7053), 900. https://doi.org/10.1038/436900a
Batista, P. D., Campiteli, M. G., & Kinouchi, O. (2006). Is it possible to compare researchers with different scientific interests?. Scientometrics, 68(1), 179-189. http://dx.doi.org/10.1007/s11192-006-0090-4
Ben-Porath, Y. (1967). The production of human capital and the life cycle of earnings. Political economy, 75(4), 352-365. https://www.ntaccounts.org/doc/repository/Ben-Porath_paper.pdf
Bicheng, D., Adnan, N., Harji, M. B., & Ravindran, L. (2023). Evolution and hotspots of peer instruction: a visualized analysis using CiteSpace. Education and Information Technologies, 28(2), 2245-2262. https://doi.org/10.1152/advan.00110.2018
Bland, C. J., Seaquist, E., Pacala, J. T., Center, B., & Finstad, D. (2002). One school's strategy to assess and improve the vitality of its faculty. Academic Medicine, 77(5), 368-376. https://doi.org/10.1097/00001888-200205000-00004
Bornmann, L., & Daniel, H. D. (2005). Does the h-index for ranking of scientists really work?. Scientometrics, 65, 391-392. https://doi.org/10.1007/s11192-005-0281-4
Bornmann, L., & Daniel, H. D. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of documentation, 64(1), 45-80. https://doi.org/10.1108/00220410810844150
Bright, L. K. (2017). Decision theoretic model of the productivity gap. Erkenntnis, 82, 421-442. https://doi.org/10.1007/s10670-016-9826-6
Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ebrahim, N. A. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. arXiv preprint arXiv:1305.0377. https://doi.org/10.48550/arXiv.1305.0377
Cole, J. R., & Zuckerman, H. (1987). Marriage, motherhood and research performance in science. Scientific American, 256(2), 119-125. https://www.jstor.org/stable/24979323
Cole, J. R., & Cole, S. (1973). Social Stratification in Science. Chicago: University of Chicago Press. https://www.journals.uchicago.edu/doi/10.1086/226571
Corallo, A., Latino, M. E., Menegoli, M., De Devitiis, B., & Viscecchia, R. (2019). Human factor in food label design to support consumer healthcare and safety: A systematic literature review. Sustainability, 11(15), 4019. https://doi.org/10.3390/su11154019
Costas, R., Zahedi, Z., & Wouters, P. (2015). Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective. Journal of the association for information science and technology, 66(10), 2003-2019. https://doi.org/10.1002/asi.23309
Courtial, J. (1994). A coword analysis of scientometrics. Scientometrics, 31(3), 251-260. https://doi.org/10.1007/bf02016875
Creswell, J. W. (1985). Faculty Research Performance: Lessons from the Sciences and the Social Sciences. Washington: Association for the Study of Higher Education. https://www.amazon.com/Faculty-Research-Performance-Sciences-EDUCATION/dp/0913317233
Cronin, B., & Meho, L. (2006). Using the h‐index to rank influential information scientistss. Journal of the American Society for Information Science and technology, 57(9), 1275-1278. https://doi.org/10.1002/asi.20354
Dundar, H., & Lewis, D. R. (1998). Determinants of research productivity in higher education. Research in higher education, 39(6), 607-631. https://doi.org/10.1023/A:1018705823763
Egghe, L. (2006a). An improvement of the h-index: The g-index. ISSI newsletter, 2(1), 8-9. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bdca34b16ccefe61901c167402b9ff73e0c6629e
Egghe, L. (2006b). Theory and practise of the g-index. Scientometrics. 69(1), 131-152. https://doi.org/10.1007/s11192-006-0144-7
Fazey, I., Evely, A. C., Reed, M. S., Stringer, L. C., Kruijsen, J., White, P. C., & Trevitt, C. (2013). Knowledge exchange: a review and research agenda for environmental management. Environmental Conservation, 40(1), 19-36. https://doi.org/10.1017/S037689291200029X
Ferreira, C., Bastille‐Rousseau, G., Bennett, A. M., Ellington, E. H., Terwissen, C., Austin, C., & Murray, D. L. (2016). The evolution of peer review as a basis for scientific publication: directional selection towards a robust discipline?. Biological Reviews, 91(3), 597-610. https://doi.org/10.1111/brv.12185
Fonseca, L., Velloso, S., Wofchuk, S., & de Meis, L. (1997). The importance of human relationships in scientific productivity. Scientometrics, 39(2), 159-171. https://doi.org/10.1007/bf02457445
Fox, M. F. (1983). Publication productivity among scientists: A critical review. Social studies of science, 13(2), 285-305. https://doi.org/10.1177/030631283013002005
Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science, 122(3159), 108-111. https://doi.org/10.1126/science.122.3159.108
Garfield, E. (1972). Citation analysis as a tool in journal evaluation: Journals can be ranked by frequency and impact of citations for science policy studies. Science, 178(4060), 471-479. https://doi.org/10.1126/science.178.4060.471
Geng, Y., Zhang, N., & Zhu, R. (2023). Research progress analysis of sustainable smart grid based on CiteSpace. Energy Strategy Reviews, 48, 101111. https://doi.org/10.1016/j.esr.2023.101111
Gjerde, C. (1992). Where are articles by candidates for academic promotion published. J Fam Pract, 34(4), 449-453. https://cdn.mdedge.com/files/s3fs-public/jfp-archived-issues/1992-volume_34/April%201992/JFP_1992-04_v34_i4_where-are-articles-by-candidates-for-aca.pdf
 Glänzel, W. (2006). On the h-index-A mathematical approach to a new measure of publication activity and citation impact. Scientometrics, 67(2), 315-321. https://doi.org/10.1007/s11192-006-0102-4
Godin, B. (2009). The value of science: changing conceptions of scientific productivity, 1869 to circa 1970. Social Science Information, 48(4), 547-586. https://doi.org/10.1177/0539018409344475
Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, 106, 787-804. https://doi.org/10.1007/s11192-015-1798-9
Hicks, D. (2012). Performance-based university research funding systems. Research policy, 41(2), 251-261. https://doi.org/10.1016/j.respol.2011.09.007
Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., & Rafols, I. (2015). Bibliometrics: the Leiden Manifesto for research metrics. Nature, 520(7548), 429-431. https://doi.org/10.1038/520429a
Hirsch, I., Milwitt, W., & Oakes, W. J. (1958). Increasing the productivity of scientists. Harvard Business Review, 36(2), 66-76. https://doi.org/10.1007/BF02457402
Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National academy of Sciencessciences, 102(46), 16569-16572. https://doi.org/10.1073/pnas.0507655102
Holden, G., Rosenberg, G., & Barker, K. (2005). Bibliometrics: A potential decision makingdecision-making aid in hiring, reappointment, tenure and promotion decisions. Social work in health care, 41(3-4), 67-92. https://doi.org/10.1300 / J010v41n03_03
Hottenrott, H., & Thorwarth, S. (2011). Industry funding of university research and scientific productivity. Kyklos, 64(4), 534-555. https://doi.org/10.1111/j.1467-6435.2011.00519.x
Hu, A. G., Jefferson, G. H., & Jinchang, Q. (2005). R&D and technology transfer: firm-level evidence from Chinese industry. Review of Economics and Statistics, 87(4), 780-786. https://doi.org/10.1162/003465305775098143
Huang, J., Gates, A. J., Sinatra, R., & Barabási, A. L. (2020). Historical comparison of gender inequality in scientific careers across countries and disciplines. Proceedings of the National Academy of Sciences, 117(9), 4609-4616. https://doi.org/10.1073/pnas.1914221117
Isohanni, M., Isohanni, I., & Veijola, J. (2002). How should a scientific team be effectively formed and managed. Nordic Journal of Psychiatry, 56(2), 157-162. https://doi.org/10.1080/080394802753617999
Ivancheva, L. (2008). Scientometrics today: A methodological overview. Collnet Journal of Scientometrics and Information Management, 2(2), 47-56. https://doi.org/10.1080/09737766.2008.10700853
 Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research policy, 26(1), 1-18. https://doi.org/10.1016/S0048-7333(96)00917-1
Kelly, C. D., & Jennions, M. D. (2006). The h index and career assessment by numbers. Trends in Ecology & Evolution, 21(4), 167-170. https://doi.org/10.1016/j.tree.2006.01.005
Kim, M. C., & Zhu, Y. (2018). Scientometrics of scientometrics: mapping historical footprint and emerging technologies in scientometrics. Scientometrics, 1, 9-27. https://doi.org/10.5772/intechopen.77951.
Klein, W. C., & Bloom, M. (1992). Studies of scholarly productivity in social work using citation analysis. Journal of Social Work Education, 28(3), 291-299. https://doi.org/10.1080/10437797.1992.10778782
Kreuger, L. W. (1993). Should there be a moratorium on articles that rank schools of social work based on faculty publications? Yes!. Journal of Social Work Education, 29(3), 240-245. https://doi.org/10.1080/10437797.1993.10778820
Lancho-Barrantes, B. S., Ceballos, H. G., & Cantú-Ortiz, F. J. (In press). Factors that influence scientific productivity from different countries: A causal approach through multiple regression using panel data. BioRxiv. Retrieved 2019, june, 25, from https://www.biorxiv.org/content/biorxiv/early/2019/02/25/558254.full.pdf
Larivière, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900. Journal of the Association for Information Science and Technology, 66(7), 1323-1332. https://doi.org/10.1002/asi.23266
Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science. Nature, 504(7479), 211-213. https://doi.org/10.1038/504211a
Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social studies of science, 35(5), 673-702. https://doi.org/10.1177/0306312705052359
Lehmann, S., Jackson, A. D., & Lautrup, B. E. (2006). Measures for measures. Nature, 444(7122), 1003-1004. https://doi.org/10.1038/4441003a
Levin, S. G., & Stephan, P. E. (1991). Research productivity over the life cycle: Evidence for academic scientists. The American economic review, 114-132. https://www.jstor.org/stable/2006790
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington academy of sciences, 16(12), 317-323. https://www.jstor.org/stable/24529203
Mahdizadeh, M. (2022). Qualitative meta-analysis of scientific articles related to faculty members' productivity in Iran. Higher Education Letter, 15(58), 31-52. https://journal.sanjesh.org/article_254274.html [In Persian].
Mairesse, J., & Turner, L. (2010). Measurement and explanation of the intensity of co-publication in scientific research: An analysis at the laboratory level [working paper]. National Bureau of Economic Research. July, 11172. https://www.nber.org/papers/w11172
Mali, F., Pustovrh, T., Platinovšek, R., Kronegger, L., & Ferligoj, A. (2017). The effects of funding and co-authorship on research performance in a small scientific community. Science and Public Policy, 44(4), 486-496. https://doi.org/10.1093/scipol/scw076
Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of informetrics, 12(4), 1160-1177. https://doi.org/10.1016/j.joi.2018.09.002
Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of LIS faculty: Web of Science versus Scopus and Google Scholar. Journal of the american society for information science and technology, 58(13), 2105-2125. https://doi.org/10.1002/asi.20677
Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56-63.  https://www.science.org/doi/10.1126/science.159.3810.56
Milat, A. J., Bauman, A. E., & Redman, S. (2015). A narrative review of research impact assessment models and methods. Health Research Policy and Systems, 13, 1-7. https://doi.org/10.1186/s12961-015-0003-1
Miller, J. C., Coble, K. H., & Lusk, J. L. (2013). Evaluating top faculty researchers and the incentives that motivate them. Scientometrics, 97, 519-533. https://doi.org/10.1007/s11192-013-0987-7
Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106, 213-228. https://doi.org/10.1007/s11192-015-1765-5
Penfield, T., Baker, M. J., Scoble, R., & Wykes, M. C. (2014). Assessment, evaluations, and definitions of research impact: A review. Research evaluation, 23(1), 21-32. https://doi.org/10.1093/reseval/rvt021
R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 
https://www.R-project.org/
Racherla, P., & Hu, C. (2010). A social network perspective of tourism research collaborations. Annals of Tourism Research, 37(4), 1012-1034. https://doi.org/10.1016/j.annals.2010.03.008
Ramsden, P. (1994). Describing and explaining research productivity. Higher education, 28(2), 207-226. https://doi.org/10.1007/BF01383729
Ravikumar, S., Agrahari, A., & Singh, S. N. (2015). Mapping the intellectual structure of scientometrics: A co-word analysis of the journal Scientometrics (2005–2010). Scientometrics, 102, 929-955. https://doi.org/10.1007/s11192-014-1402-8
Reskin, B. F. (1978). Scientific productivity, sex, and location in the institution of science. American Journal of Sociology, 83(5), 1235-1243. https://‌doi/abs/10.1086/226681 https://psycnet.apa.org/doi/10.1086/226681
 Schnitzler, K., Davies, N., Ross, F., & Harris, R. (2016). Using Twitter™ to drive research impact: a discussion of strategies, opportunities and challenges. International journal of nursing studies, 59, 15-26. https://doi.org/10.1016/j.ijnurstu.2016.02.004
Sedighi, M. (2014). Using Co-word Analysis Method in Mapping of the Structure of Scientific Fields (Case Study: The Field of Informetrics), Iranian Journal of Information Processing & Management, 30 (2), 373-396. https://doi.org/ 10.35050/JIPM010.2015.040 [In Persian].
Seglen, P. O. (1997). Why the impact factor of journals should not be used for evaluating research. Bmj, 314(7079), 497. https://doi.org/10.1136/bmj.314.7079.497
Shin, J., & Cummings, W. (2010). Multilevel analysis of academic publishing across disciplines: Research preference, collaboration, and time on research. Scientometrics, 85(2), 581-594. https://doi.org/10.1007/s11192-010-0236-2
Spaapen, J., & Van Drooge, L. (2011). Introducing ‘productive interactions’ in social impact assessment. Research evaluation, 20(3), 211-218. https://doi.org/10.3152/095820211X12941371876742
Tangen, S. (2005). Demystifying productivity and performance. International Journal of Productivity and performance management, 54(1), 34-46. https://doi.org/10.1108/17410400510571437
Tao, Y., & Lin, P. H. (2023). Analyses of Sustainable Development of Cultural and Creative Parks: A Pilot Study Based on the Approach of CiteSpace Knowledge Mapping. Sustainability, 15(13), 10489. https://doi.org/10.3390/su151310489
Thyer, B. A., & Bentley, K. J. (1986). Academic affiliations of social work authors: A citation analysis of six major journals. Journal of Social Work Education, 22(1), 67-73. https://doi.org/10.1080/10437797.1986.10671731
Tien, F. F., & Blackburn, R. T. (1996). Faculty rank system, research motivation, and faculty research productivity: Measure refinement and theory testing. The Journal of Higher Education, 67(1), 2-22. https://doi.org/10.1080/00221546.1996.11780246
Tootoonchi, M., Yamani, N., Changiz, T., Taleghani, F., & Mohammadzadeh, Z. (2014). Assessment of educational criteria in academic promotion: Perspectives of faculty members of medical sciences universities in Iran. Journal of education and health promotion, 3. https://doi.org/10.4103/2277-9531.131893
Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
Van Raan, A. F. (2006). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. scientometrics, 67, 491-502. https://doi.org/10.1556/Scient.67.2006.3.10
Vinkler, P. (2017). The size and impact of the elite set of publications in scientometric assessments. Scientometrics, 110, 163-177. https://doi.org/10.1007/s11192-016-2165-1
Wang, X., Wang, Z., & Xu, S. (2013). Tracing scientist’s research trends realtimely. Scientometrics, 95, 717-729. https://doi.org/10.1007/s11192-012-0884-5
Xie, Y., & Shauman, K. A. (1998). Sex differences in research productivity: New evidence about an old puzzle. American sociological review, 847-870. https://psycnet.apa.org/record/1998-03313-006
Yang, W., Wang, S., Chen, C., Leung, H. H., Zeng, Q., & Su, X. (2022). Knowledge mapping of enterprise network research in China: a visual analysis using CiteSpace. Frontiers in Psychology, 13, 898538. https://doi.org/10.3389/fpsyg.2022.898538
Zerem, E. (2017). The ranking of scientists based on scientific publications assessment. Journal of Biomedical Informatics, 75, 107-109. https://doi.org/10.1016/j.jbi.2017.10.007