Abramo, G., D'Angelo, C., & Di Costa, F. (2008). Assessment of sectoral aggregation distortion in research productivity measurements.
Research Evaluation,
17(2), 111-121.
https://doi.org/10.3152/095820208X280916
Aksnes, D. W., Langfeldt, L., & Wouters, P. (2019). Citations, citation indicators, and research quality: An overview of basic concepts and theories.
Sage Open,
9(1), 2158244019829575.
https://doi.org/10.1177/2158244019829575
Alfirevic, N., Pavicic, J., & Rendulic, D. (2023). A bibliometric analysis of public business school scientific productivity and impact in South-east Europe (2017-2021).
The South East European Journal of Economics and Business,
18(1), 27-45.
https://doi.org/10.2478/jeb-2023-0003
Allison, P. D., & Long, J. S. (1990). Departmental effects on scientific productivity.
American sociological review, 469-478.
https://doi.org/10.2307/2095801
Baccini, A., Barabesi, L., Cioni, M., & Pisani, C. (2014). Crossing the hurdle: the determinants of individual scientific performance.
Scientometrics,
101, 2035-2062.
https://doi.org/10.1007/s11192-014-1395-3
Bak, H. J., & Kim, D. H. (2019). The unintended consequences of performance-based incentives on inequality in scientists’ research performance.
Science and Public Policy,
46(2), 219-231.
https://doi.org/10.1093/scipol/scy052
Batista, P. D., Campiteli, M. G., & Kinouchi, O. (2006). Is it possible to compare researchers with different scientific interests?. Scientometrics, 68(1), 179-189. http://dx.doi.org/10.1007/s11192-006-0090-4
Ben-Porath, Y. (1967). The production of human capital and the life cycle of earnings. Political economy, 75(4), 352-365. https://www.ntaccounts.org/doc/repository/Ben-Porath_paper.pdf
Bicheng, D., Adnan, N., Harji, M. B., & Ravindran, L. (2023). Evolution and hotspots of peer instruction: a visualized analysis using CiteSpace.
Education and Information Technologies,
28(2), 2245-2262.
https://doi.org/10.1152/advan.00110.2018
Bland, C. J., Seaquist, E., Pacala, J. T., Center, B., & Finstad, D. (2002). One school's strategy to assess and improve the vitality of its faculty.
Academic Medicine,
77(5), 368-376. https://doi.org/
10.1097/00001888-200205000-00004
Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ebrahim, N. A. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases.
arXiv preprint arXiv:1305.0377.
https://doi.org/10.48550/arXiv.1305.0377
Cole, J. R., & Zuckerman, H. (1987). Marriage, motherhood and research performance in science. Scientific American, 256(2), 119-125. https://www.jstor.org/stable/24979323
Corallo, A., Latino, M. E., Menegoli, M., De Devitiis, B., & Viscecchia, R. (2019). Human factor in food label design to support consumer healthcare and safety: A systematic literature review.
Sustainability,
11(15), 4019.
https://doi.org/10.3390/su11154019
Costas, R., Zahedi, Z., & Wouters, P. (2015). Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective.
Journal of the association for information science and technology,
66(10), 2003-2019.
https://doi.org/10.1002/asi.23309
Cronin, B., & Meho, L. (2006). Using the h‐index to rank influential information scientistss.
Journal of the American Society for Information Science and technology,
57(9), 1275-1278.
https://doi.org/10.1002/asi.20354
Fazey, I., Evely, A. C., Reed, M. S., Stringer, L. C., Kruijsen, J., White, P. C., & Trevitt, C. (2013). Knowledge exchange: a review and research agenda for environmental management.
Environmental Conservation,
40(1), 19-36.
https://doi.org/10.1017/S037689291200029X
Ferreira, C., Bastille‐Rousseau, G., Bennett, A. M., Ellington, E. H., Terwissen, C., Austin, C., & Murray, D. L. (2016). The evolution of peer review as a basis for scientific publication: directional selection towards a robust discipline?.
Biological Reviews,
91(3), 597-610.
https://doi.org/10.1111/brv.12185
Fonseca, L., Velloso, S., Wofchuk, S., & de Meis, L. (1997). The importance of human relationships in scientific productivity.
Scientometrics,
39(2), 159-171.
https://doi.org/10.1007/bf02457445
Garfield, E. (1972). Citation analysis as a tool in journal evaluation: Journals can be ranked by frequency and impact of citations for science policy studies.
Science,
178(4060), 471-479.
https://doi.org/10.1126/science.178.4060.471
Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison.
Scientometrics,
106, 787-804.
https://doi.org/10.1007/s11192-015-1798-9
Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., & Rafols, I. (2015). Bibliometrics: the Leiden Manifesto for research metrics.
Nature,
520(7548), 429-431.
https://doi.org/10.1038/520429a
Hirsch, J. E. (2005). An index to quantify an individual's scientific research output.
Proceedings of the National academy of Sciencessciences,
102(46), 16569-16572.
https://doi.org/10.1073/pnas.0507655102
Holden, G., Rosenberg, G., & Barker, K. (2005). Bibliometrics: A potential decision makingdecision-making aid in hiring, reappointment, tenure and promotion decisions.
Social work in health care,
41(3-4), 67-92.
https://doi.org/10.1300 / J010v41n03_03
Hu, A. G., Jefferson, G. H., & Jinchang, Q. (2005). R&D and technology transfer: firm-level evidence from Chinese industry.
Review of Economics and Statistics,
87(4), 780-786.
https://doi.org/10.1162/003465305775098143
Huang, J., Gates, A. J., Sinatra, R., & Barabási, A. L. (2020). Historical comparison of gender inequality in scientific careers across countries and disciplines.
Proceedings of the National Academy of Sciences,
117(9), 4609-4616.
https://doi.org/10.1073/pnas.1914221117
Kim, M. C., & Zhu, Y. (2018). Scientometrics of scientometrics: mapping historical footprint and emerging technologies in scientometrics.
Scientometrics,
1, 9-27.
https://doi.org/10.5772/intechopen.77951.
Kreuger, L. W. (1993). Should there be a moratorium on articles that rank schools of social work based on faculty publications? Yes!.
Journal of Social Work Education,
29(3), 240-245.
https://doi.org/10.1080/10437797.1993.10778820
Larivière, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900.
Journal of the Association for Information Science and Technology,
66(7), 1323-1332.
https://doi.org/10.1002/asi.23266
Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science.
Nature,
504(7479), 211-213.
https://doi.org/10.1038/504211a
Levin, S. G., & Stephan, P. E. (1991). Research productivity over the life cycle: Evidence for academic scientists.
The American economic review, 114-132.
https://www.jstor.org/stable/2006790
Mairesse, J., & Turner, L. (2010). Measurement and explanation of the intensity of co-publication in scientific research: An analysis at the laboratory level [working paper]. National Bureau of Economic Research. July, 11172.
https://www.nber.org/papers/w11172
Mali, F., Pustovrh, T., Platinovšek, R., Kronegger, L., & Ferligoj, A. (2017). The effects of funding and co-authorship on research performance in a small scientific community.
Science and Public Policy,
44(4), 486-496.
https://doi.org/10.1093/scipol/scw076
Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories.
Journal of informetrics,
12(4), 1160-1177.
https://doi.org/10.1016/j.joi.2018.09.002
Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of LIS faculty: Web of Science versus Scopus and Google Scholar.
Journal of the american society for information science and technology,
58(13), 2105-2125.
https://doi.org/10.1002/asi.20677
Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56-63. https://www.science.org/doi/10.1126/science.159.3810.56
Milat, A. J., Bauman, A. E., & Redman, S. (2015). A narrative review of research impact assessment models and methods.
Health Research Policy and Systems,
13, 1-7.
https://doi.org/10.1186/s12961-015-0003-1
Penfield, T., Baker, M. J., Scoble, R., & Wykes, M. C. (2014). Assessment, evaluations, and definitions of research impact: A review.
Research evaluation,
23(1), 21-32.
https://doi.org/10.1093/reseval/rvt021
R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/
Ravikumar, S., Agrahari, A., & Singh, S. N. (2015). Mapping the intellectual structure of scientometrics: A co-word analysis of the journal Scientometrics (2005–2010).
Scientometrics,
102, 929-955.
https://doi.org/10.1007/s11192-014-1402-8
Reskin, B. F. (1978). Scientific productivity, sex, and location in the institution of science. American Journal of Sociology, 83(5), 1235-1243. https://doi/abs/10.1086/226681 https://psycnet.apa.org/doi/10.1086/226681
Schnitzler, K., Davies, N., Ross, F., & Harris, R. (2016). Using Twitter™ to drive research impact: a discussion of strategies, opportunities and challenges.
International journal of nursing studies,
59, 15-26.
https://doi.org/10.1016/j.ijnurstu.2016.02.004
Sedighi, M. (2014). Using Co-word Analysis Method in Mapping of the Structure of Scientific Fields (Case Study: The Field of Informetrics),
Iranian Journal of Information Processing & Management,
30 (2), 373-396.
https://doi.org/ 10.35050/JIPM010.2015.040 [In Persian].
Shin, J., & Cummings, W. (2010). Multilevel analysis of academic publishing across disciplines: Research preference, collaboration, and time on research.
Scientometrics,
85(2), 581-594.
https://doi.org/10.1007/s11192-010-0236-2
Tao, Y., & Lin, P. H. (2023). Analyses of Sustainable Development of Cultural and Creative Parks: A Pilot Study Based on the Approach of CiteSpace Knowledge Mapping.
Sustainability,
15(13), 10489.
https://doi.org/10.3390/su151310489
Tien, F. F., & Blackburn, R. T. (1996). Faculty rank system, research motivation, and faculty research productivity: Measure refinement and theory testing.
The Journal of Higher Education,
67(1), 2-22.
https://doi.org/10.1080/00221546.1996.11780246
Tootoonchi, M., Yamani, N., Changiz, T., Taleghani, F., & Mohammadzadeh, Z. (2014). Assessment of educational criteria in academic promotion: Perspectives of faculty members of medical sciences universities in Iran.
Journal of education and health promotion,
3. https://doi.org/
10.4103/2277-9531.131893
Van Raan, A. F. (2006). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups.
scientometrics,
67, 491-502.
https://doi.org/10.1556/Scient.67.2006.3.10
Yang, W., Wang, S., Chen, C., Leung, H. H., Zeng, Q., & Su, X. (2022). Knowledge mapping of enterprise network research in China: a visual analysis using CiteSpace.
Frontiers in Psychology,
13, 898538.
https://doi.org/10.3389/fpsyg.2022.898538