همبستگی عملکرد دانشگاه‌ها در رتبه‌بندی‌های جهانی تایمز و ایمپکت تایمز با نگرش‌های اجتماعی درباره آن‌ها: عقیده کاوی توییت‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علم اطلاعات و دانش‌شناسی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه شیراز، شیراز، ایران.

2 دکتری علم اطلاعات و دانش‌شناسی، استاد، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه شیراز، شیراز، ایران.

3 دکتری علم اطلاعات و دانش‌شناسی، استادیار، گروه پژوهشی سنجش علم و فناوری، موسسه استنادی و پایش علم و فناوری جهان اسلام (ISC)، شیراز، ایران.

چکیده

هدف: پژوهش حاضر با استفاده از عقیده کاوی توییت‌ها به بررسی همبستگی میان نتایج رتبه­بندی‌های تایمز و ایمپکت و دیدگاه‌های اجتماعی در مورد دانشگاه‌های راه‌یافته به این رتبه‌بندی­ها پرداخته است.
روش‌شناسی: پژوهش حاضر، ازنظر هدف کاربردی و ازنظر روش گردآوری داده‌ها از نوع اسنادی و تحلیل داده‌ها، تحلیل محتوای کمی با رویکرد دگر سنجی و عقیده کاوی است. نمونة آماری پژوهش 355 دانشگاه از دانشگاه­های رتبه‌بندی شده در سامانه تایمز در سال‌های 2019-2021 است. توییت‌ها و نمرات عقیدة آن­ها با استفاده از نرم‌افزار مزده  و سنتی­استرنگث  استخراج و محاسبه شد. داده‌ها با تحلیل همبستگی اسپیرمن بررسی شد.
یافته‌ها: یافته‎‌های پژوهش همبستگی معنی‌داری در حد ضعیف تا متوسط میان فراوانی توییت‌ها دربارة دانشگاه‌های موردبررسی و عملکرد کلی آن­ها در سامانه‌های رتبه‌بندی تایمز و ایمپکت و همچنین نمرة آن­ها در ابعاد مختلف سامانه رتبه‌بندی تایمز را نشان می‌دهد. فراوانی توییت‌ها قوی‌ترین همبستگی با عملکرد کل در ایمپکت و ضعیف‌ترین همبستگی را با «درآمد از صنعت» در سامانه تایمز نشان داد. عملکرد کل دانشگاه­ها در رتبه­بندی تایمز و ایمپکت نیز با فراوانی توییت­های مثبت و منفی همبستگی معنی­داری نشان داد. همچنین، نمرة عملکرد کل در رتبه‌بندی تایمز و ایمپکت، با نمرة عقاید مثبت و منفی همبستگی مستقیم نشان داد.
نتیجه‌گیری: سامانه‌های رتبه‌بندی تا اندازه‌ای و در برخی ابعاد با دیدگاه‌های اجتماعی دربارة دانشگاه‌ها -دست‌کم به لحاظ آنچه در توییتر منعکس‌شده – همسو هستند و در برخی ابعاد ناهم‌سویی نشان می‌دهند؛ بنابراین، در تفسیر نتایج سامانه‌های رتبه‌بندی ‌باید با دقت بیشتری عمل کرد. سامانه‌های رتبه‌بندی و توجهات اجتماعی می‌توانند نقش مکملی داشته باشند و در کنار هم ادراک و شناخت بهتر و عمیق‌تری از عملکرد یک دانشگاه ارائه دهند. ازاین‌رو، بهبود عملکرد این سامانه‌ها با افزودن نظرسنجی‌های اجتماعی ممکن است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Correlation of Universities’ Perfor-mances in THE and THE Impact World Rankings with Social Attitudes toward them: Opinion Mining of Tweets

نویسندگان [English]

  • Tahereh Najafi Duraki 1
  • Hajar Sotudeh 2
  • Maryam Yaghtin 3
1 M.A Student in Knowledge and Information Science, Department of Knowledge and Information Science, Shiraz University, Shiraz, Iran.
2 Ph.D in Knowledge and Information Science, Professor, Department of Knowledge and Information Science, Shiraz University, Shiraz, Iran.
3 Ph.D in Knowledge and Information Science, Assistant Professor, Department of Scientometrics, Islamic World Science and Technology Monitoring and Citation Institute (ISC), Shiraz, Iran.
چکیده [English]

Purpose: This study aims to evaluate university ranking systems by analyzing the attitudes of their social stakeholders. It examines opinions expressed in tweets about universities and analyzes their correlations with the universities' performance scores. The rationale lies in the importance of the evaluating the academic performance of higher education institutions, which is essential but challenging due to the absence of universally accepted standards. For decades, global university rankings have sought to develop methodologies to measure academic performance. However, they face criticism for overestimating certain factors, underestimating or ignoring others, and exhibiting bias due to their reliance on surveys or citation databases. Consequently, their results are often viewed as unrealistic and misleading. Attaining accurate ranking outcomes is essential, as they can initiate a "ranking for ranking's sake phenomenon, prompting individuals and institutions to prioritize ranking criteria over their core missions and the quality of their services. This shift in focus may cause universities to stray from their primary objectives due to unreasonable external evaluations. Therefore, it is necessary to evaluate the quality of ranking system results. Research on ranking systems has primarily concentrated on the correlations of their outcomes. Additionally, these studies have addressed the methodological similarities among various global ranking systems. The findings confirmed partial similarities in both the results and methodologies. However, due to the commonalities in methodologies, it is necessary to evaluate the results based on external benchmarks. As universities aim to address the needs and interests of their stakeholders in order to enhance their societal standing and ensure their survival, the attitudes of these stakeholders can serve as a valuable benchmark. Social media provides a platform for the general public to discuss and comment on various subjects, including university capabilities, services, and activities. Consequently, these platforms offer opportunities to analyze the opinions of university stakeholders worldwide.

Times Higher Education

Methodology: The methodology used in this study involved a quantitative content analysis, incorporating opinion mining and altmetric approaches. The research focused on a sample of universities that are ranked in the Times Higher Education (THE) and THE Impact Ranking systems. A distinct and specific name was an inclusion criterion to ensure precise searches on X (formerly Twitter). A sample of 355 universities ranked in the Times Higher Education (THE) rankings from 2019 to 2021 were identified, and their coverage in the THE Impact ranking was verified, resulting in 174 universities being ranked in both systems. Tweets about these universities were extracted using Mozdeh's Big Data Text Analysis, and opinion scores were calculated using the SentiStrength opinion mining tool. The tweet data were collected through an extensive search on Twitter from January 3, 2022, to August 8, 2022. Due to the non-normality of the data distributions, Spearman correlation analysis was employed to analyze the data.
Findings: The research findings indicated weak to moderate significant correlations between the frequency of tweets about universities and their overall scores in the Times Higher Education (THE) and THE Impact Ranking systems, as well as their dimension scores in THE. Tweet counts demonstrated the strongest correlation with the overall score in THE Impact and the weakest correlation with industry income in THE. A significant relationship was observed between total tweet counts and tweet counts reflecting opinion polarities, indicating that an increase in a university's performance score is associated with a rise in expressed opinions on Twitter, and vice versa. This finding was consistent across both total scores in the Times Higher Education (THE) and THE Impact Ranking systems, as well as the dimension scores of the latter. Furthermore, the overall THE score showed a direct correlation with the strength of positive opinions, suggesting that improved performance in the United Nations Sustainable Development Goals (SDGs) resulted in higher positive opinion scores in tweets. However, no significant correlation was found between performance scores in THE Impact and negative opinions expressed in tweets. Meanwhile, overall performance scores in THE were correlated with both positive and negative opinion strengths.
Conclusion: The results indicate that, while societal perceptions of universities are closely aligned with their performance in sustainable development goals, they only partially correspond with their performance in the Times Higher Education (THE) rankings at both overall and in specific dimensions. Thus, THE ranking system and social attention may have a complementary relationship, offering a more comprehensive understanding of university performance. It is, therefore, possible to enhance ranking systems by incorporating social surveys. However, due to the challenges associated with altmetrics, extensive research is necessary to facilitate the practical application of this metric in evaluations. This research also contributes to the altmetrics literature by reaffirming the distinction between quantitative and content-based approaches in altmetric studies.

کلیدواژه‌ها [English]

  • Times Higher Education Impact Rankings
  • Times World University Rankings (THE)
  • Twitter
  • University ranking
  • Social network
 
پاکزاد، م.، خالدی.، آ.، و تیموری، م. (1391). بررسی تطبیقی نظام­های بین­المللی رتبه­بندی دانشگاه­ها و مراکز آموزش عالی. رهیافت، 22(50)، 71-88.  https://rahyaft.nrisp.ac.ir/article_13516.html
خانی‌زاد، ر.، و منتظر، غ. (1396). ارزیابی تطبیقی نظام‌های رتبه‌بندی دانشگاه‌های جهان. سیاست علم و فناوری، 10(3)، 31-43.‎ https://jstp.nrisp.ac.ir/article_12985.html
ستوده، ه.، روایی، م.، میرزابیگی، م.، و مزارعی، ز. (1396). چالش‌های دگر سنجی در ارزیابی پژوهش به روش تحلیل مضمون. مدیریت اطلاعات سلامت، 14(3)، 124-129.‎ https://him.mui.ac.ir/article_11582.html
عرفان­منش، م. ا.، حسینی، ا.، و حبیبی، س. (1397). تحلیل توییت مقاله‌های علمی در توییتر. فصلنامه مطالعات ملی کتابداری و سازماندهی اطلاعات، 29(3)، 93-111. https://sid.ir/paper/224327/fa
مشتاق، م.، ستوده، ه.، یقطین، م.، و جوکار، ط. (1400). همبستگی نتایج سامانه­های رتبه­بندی نمایه نیچر و لایدن با تایمز و کیو-اس. پژوهش­نامه علم­سنجی، 7(2)، 157-172.
    https://doi.org/10.22070/rsci.2020.5488.1384
نورمحمدی، ح.، و صفری، ف. (1392). معرفى نظام­هاى رتبه­بندى جهانى دانشگاه­ها و بررسى شاخص­هاى این نظام‌ها. سیاست­نامه علم و فناوری، 3(2)، 71-86. https://stpl.ristip.sharif.ir/article_1181.html
Abdelrazeq, A., Janßen, D., Tummel, C., Jeschke, S., & Richert, A. (2016). Sentiment Analysis of Social Media for Evaluating Universities. Automation, Communication and Cybernetics in Science and Engineering 2015/2016. (pp. 233–251). Springer.  
Aguillo, I. F., Bar-Ilan, J., Levene, M., & Ortega, J. L. (2010). Comparing university rankings. Scientometrics85(1), 243-256. https://doi.org/10.1007/s11192-010-0190-z
Alassaf, M., & Qamar, A. M. (2020, November). Aspect-based sentiment analysis of Arabic tweets in the education sector using a hybrid feature selection method [Conference presentation]. In 2020 14th International Conference on Innovations in Information Technology (IIT) (pp. 178-185). IEEE. https://doi.org/10.1109/IIT50501.2020.9299026
Al Bashaireh, R., Sabeeh, V., & Zohdy, M. (2019). Towards a new indicator for evaluating universities based on Twitter sentiment analysis [Conference presentation]. In 2019 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1398-1404). IEEE. https://doi.org/10.1109/CSCI49370.2019.00261  
Al-Ghaith, W. (2023). Exploring Saudi Higher Education Issues by using Sentiment Analysis of Saudi Dialect Tweets [Conference presentation]. In Proceedings of the Future Technologies Conference, (3), (pp. 194-211). Cham: Springer Nature Switzerland.
      https://doi.org/10.1007/978-3-031-47457-6_13
Alsadi, M., Gülseçen, S., & Kartal, E. (2016) Top 10 Turkish Universities Twitter Analysis User Sentiment Analysis And Comparison With International Ones. Yönetim Bilişim Sistemleri Dergisi, 2(2), 129-139. https://dergipark.org.tr/en/download/article-file/270582
Altbach, P. G. (2012). The globalization of college and university rankings. Change: The Magazine of Higher Learning44(1), 26-31. https://doi.org/10.1080/00091383.2012.636001
Arabzade, A., Moharami, H., & Ayazi, A. (2011). Local elastic buckling coefficients of steel plates in composite steel plate shear walls. Scientia Iranica, 18(1), 9-15.
Bar-Ilan, J., Haustein, S., Peters, I., Priem, J., Shema, H., & Terliesner, J. (2012). Beyond citations: Scholars' visibility on the social Web. Arxiv Preprint.arXiv,1205.5611.
Bélanger, C. H., Bali, S., & Longden, B. (2013). How Canadian universities use social media to brand themselves. Tertiary Education and Management20(1), 14-29.
Bharti, S. K., Babu, K. S., & Mishra, S. K. (2019). An Improved Approach for Sarcasm Detection Avoiding Null Tweets [Conference presentation]. In Pattern Recognition and Machine Intelligence: 8th International Conference, PReMI 2019, Tezpur, India, December 17-20, 2019, Proceedings, Part II (pp. 258-266). Springer International Publishing.
Bonitz, M., Bruckner, E., & Scharnhorst, A. (1997). Characteristics and impact of the Matthew effect for countries. Scientometrics40(3), 407-422. https://doi.org/10.1007/BF02459289
Bornmann, L. (2014). Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime. Journal of Informetrics8(4), 935-950.
Bornmann, L. (2015). Alternative metrics in scientometrics: A meta-analysis of research into three altmetrics. Scientometrics, 103(3), 1123-1144. https://doi.org/10.1007/s11192-015-1565-y
Bornmann, L., & Haunschild, R. (2018). Do altmetrics correlate with the quality of papers? A large-scale empirical study based on F1000Prime data. PLOS One13(5), p e0197133. https://doi.org/10.1371/journal.pone.0197133
Brauer, C., & Bernroider, E. W. N. (2015). Social media analytics with the Facebook The case of higher education institutions. Lecture Notes in Computer Science (pp. 3–12). Springer International Publishing. https://doi.org/10.1007/978-3-319-20895-4_1
Woźniak, M., & Buchnowska, D. (2013). The role and use of social media by universities-ranking of universities in social media. In M. Kaczmarczyk, & D. Rott Eds.), Problemy Konwergencji Mediów T.2. Verbum, Sosnowiec-Praga (pp.319-330).
Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent systems28(2), 15-21.
      http://doi.org/10.1109/MIS.2013.30
Césars, J., Alexis, M., & Emmanuel, E. (2021). Use of Altmetric and Bibliometric Indicators To Measure Scientific Productivity in The Fields of Life and Earth Sciences: Case Study From Haiti. European Scientific Journal, ESJ, 17(21), p. 316. 
      https://doi.org/10.19044/esj.2021.v17n21p316
Chamorro-Atalaya, O., Arce-Santillan, D., Morales-Romero, G., León-Velarde, C., Ramos-Salaza, P., Auqui-Ramos, E., & Levano-Stella, M. (2022). Sentiment analysis through Twitter as a mechanism for assessing university satisfaction. Indonesian Journal of Electrical Engineering and Computer Science28(1), 430-440.
Chawinga, W. D. (2017). Taking social media to a university classroom: teaching and learning using Twitter and blogs. International Journal of Educational Technology in Higher Education14(1), 1-19. https://doi.org/10.1186/s41239-017-0041-6
Cheung, M .K. (2013). Altmetrics: too soon for use in assessment. Nature, 494(7436), 176. https://doi.org/10.1038/494176d
Das, A., Roy, M., Dutta, S., Ghosh, S., & Das, A. K. (2015). Predicting trends in the Twitter social network: a machine learning approach [Conference presentation]. In Swarm, Evolutionary, and Memetic Computing: 5th International Conference, SEMCCO 2014, Bhubaneswar, India, December 18-20, 2014, Revised Selected Papers 5 (pp. 570-581).
      Springer International Publishing.  https://doi.org/10.1007/978-3-319-20294-5_49
Darling1, E. S., Shiffman, D., Côté, I. M., & Drew, J. A. (2013). The role of Twitter in the life cycle of a scientific publication. arXiv preprint arXiv,1305.0435.
Daughton, C. G. (2014). The Matthew Effect and widely prescribed pharmaceuticals lacking environmental monitoring: Case study of an exposure-assessment vulnerability. Science of the total environment, 466-467, 315-325. https://doi.org/10.1016/j.scitotenv.2013.06.111
De Winter, J. C. F. (2015). The relationship between tweets, citations, and article views for PLOS ONE articles. Scientometrics, 102(2), 1773-1779. https://doi.org/10.1007/s11192-014-1445-x
Dicker, R., Garcia, M., Kelly, A., & Mulrooney, H. (2018). What does ‘quality’ in higher education mean? Perceptions of staff, students, and employers. Studies in Higher Education, 44(8), 1425-1441. https://doi.org/10.1080/03075079.2018.1445987
Dumpit, D. Z., & Fernandez, C. J. (2017). Analysis of the use of social media in Higher Education Institutions (HEIs) using the Technology Acceptance Model. International Journal of Educational Technology in Higher Education14(1), 1-16.
Erfanmanesh, M. A., Hosseini, E., & Habibi, S. (2018). Tweets of Scholarly Papers on Twitter. Librarianship and Information Organization Studies29(3), 93-111.
      https://sid.ir/paper/224327/en [In Persian].
Eysenbach, G. (2011). Can tweets predict citations? Metrics of social impact based on Twitter and correlation with traditional metrics of scientific impact. Journal of medical Internet research, 13(4), p. e123. https://doi.org/10.2196/jmir.2012
Fauzi, M. A., Tan, C. N. L., Daud, M., & Awalludin, M. M. N. (2020). University rankings: A review of methodological flaws. Issues in Educational Research, 30(1), 79-96.
https://www.researchgate.net/publication/339127443_University_rankings_A_review_of_methodological_flaws
Feldman, R. (2013). Techniques and Applications for Sentiment Analysis. Communications of the ACM, 56(4), 82-89. https://doi.org/10.1145/2436256.2436274
Furini, M., & Montangero, M. (2018). Sentiment analysis and Twitter: a game proposal. Personal and Ubiquitous Computing, 22(4), 771-785. https://doi.org/10.1007/s00779-018-1142-5
Gibbs, W. W. (1995). Lost Science in the Third World. Scientific American, 273(2), 92–99.
Gunduz, S., Demirhan, F., & Sagiroglu, S. (2014). Investigating sentimental relation between social media presence and academic success of Turkish universities [Conference presentation]. In 2014 13th International Conference on Machine Learning and Applications (pp. 574-579). IEEE. https://doi.org/10.1109/ICMLA.2014.95
Haustein, S., Bowman, T. D., Holmberg, K., Peters, I., & Larivière, V. (2014). Astrophysicists on Twitter: An in-depth analysis of tweeting and scientific publication behavior. Aslib Journal of Information Management, 66(3), 279–296. Emerald.
Haustein, S. (2019). Scholarly Twitter metrics. Handbook of Quantitative Science and Technology Research. Springer International Publishing, (pp. 729–760).
Herman, E., & Nicholas, D. (2019). Scholarly reputation building in the digital age: An activity-specific approach. Review article. El profesional de la información (EPI)28(1). https://doi.org/10.3145/epi.2019.ene.02
Holmberg, K., Bowman, T. D., & Didegah, F. (2015). The meaning of impact in altmetrics. In The 2015 Altmetrics Workshop, Amsterdam.  
      https://www.researchgate.net/publication/291832113_The_meaning_of_impact_in_altmetrics
Ioannidis, J. P., Patsopoulos, N. A., Kavvoura, F. K., Tatsioni, A., Evangelou, E., Kouri, I., Contopoulos-Ioannidis, D. G., & Liberopoulos, G. (2007). International ranking systems for universities and institutions: a critical appraisal. BMC Medicine5(30), 1-9.
Irfan, A., Rasli, A., Sulaiman, Z., Sami, A., & Qureshi, M. I. (2018). Use of social media sites by Malaysian universities and its impact on university ranking. International Journal of Engineering and Technology7(4.28), 67-71. https://doi.org/10.14419/ijet.v7i4.28.22393
Katz, J. S. (1999). The self-similar science system. Research Policy28(5), 501-517.
Katz, J. S. (2000). Scale-independent indicators and research evaluation. Science and Public Policy27(1), 23-36. https://doi.org/10.3152/147154300781782156
Khanizad, R., & Montazer, G. (2017). A Comparative Evaluation of the World University Rankings Systems. Journal of Science and Technology Policy, 10(3), 31-43.
      https://jstp.nrisp.ac.ir/article_12985.html?lang=en [In Persian].
Komotar, M. H. (2020). Discourses on quality and quality assurance in higher education from the perspective of global university rankings. Quality Assurance in Education, 28(1), 78-88. https://doi.org/10.1108/QAE-05-2019-0055
Kuzma, J. M., & Wright, W. (2013). Using social networks as a catalyst for change in global higher education marketing and recruiting. International Journal of Continuing Engineering Education and Life Long Learning23(1), 53-66.
Li, X., Thelwall, M., & Giustini, D. (2011). Validating online reference managers for scholarly impact measurement. Scientometrics, 91(2), 461-471. http://dx.doi.org/10.1007/s11192-011-0580-x
Mason, S. (2020). Adoption and usage of Academic Social Networks: A Japan case study. Scientometrics, 122(3), 1751–1767. https://doi.org/10.1007/s11192-020-03345-4
McCoy, C. G., Nelson, M. L., & Weigle, M. C. (2018). Mining the Web to approximate university rankings. Information Discovery and Delivery, 46(3), 173-183.  
Merton, R. K. (1968) The Matthew effect in science. Science, 159(3810), 56–63.
Merton, R. K. (1988). The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. ISIS, 79(4), 607–623.
      https://garfield.library.upenn.edu/merton/matthewii.pdf
Milán, P. N., Sanz, M. P., & Vázquez, Y. G. (2022). NLP technologies for analyzing user-generated Twitter data to identify the reputation of universities in the Valencian Community, Spain. International Journal of Electronic Marketing and Retailing, 13(2), 242-258. https://doi.org/10.1504/IJEMR.2022.121829
Moshtagh, M., Sotudeh, H., Yaghtin, M., & Jowkar, T. (2021). The Correlation of Nature and Leiden Index Ranking Systems with Times and QS. Scientometrics Research Journal, 7(2), 157-172. https://doi.org/10.22070/rsci.2020.5488.1384 [In Persian].
Neylon, C., Willmers, M., & King, T. (2014). Rethinking impact: Applying altmetrics to southern African research. Paper/Scholarly Communication in Africa Programme; 1, January 2014. http://hdl.handle.net/10625/53461
Nicholas, D., Herman, E., Jamali, H., Rodríguez-Bravo, B., Boukacem-Zeghmouri, C., Dobrowolski, T., & Pouchot, S. (2015). New ways of building, showcasing, and measuring scholarly reputation. Learned Publishing, 28(3), 169–183. https://doi.org/10.1087/20150303
Nourmohammadi, H. A., & Safari, F. (2013). Introduction to the global rankings of universities and review criteria of this system. Science and Technology Policy Letters, 3(2), 71-86. https://stpl.ristip.sharif.ir/article_1181.html?lang=en  [In Persian].
Olcay, G. A., & Bulu, M. (2017). Is measuring the knowledge creation of universities possible? A review of university rankings. Technological Forecasting and Social Change123, 153-160. https://doi.org/10.1016/j.techfore.2016.03.029
O'Regan, G. (2015). Twitter. Pillars of Computing, 215-218, Springer International Publishing.  https://doi.org/10.1007/978-3-319-21464-1_33
Pakzad, M., Khaledi, A., & Teimouri, M. (2012). Comparative Study of International Ranking Systems of Universities and Higher Education Centers. Rahyaft, 22(50), 71-88.
      https://rahyaft.nrisp.ac.ir/article_13516.html [In Persian].
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and trends in information retrieval, 2(1-2), 1-135. http://dx.doi.org/10.1561/1500000011
Parthasarathy, G., & Tomar, D. C. (2014). Sentiment analyzer: Analysis of journal citations from citation databases [Conference presentation]. In Confluence The Next Generation Information Technology Summit (Confluence), 2014 5th International Conference- (pp. 923-928). IEEE. https://doi.org/10.1109/CONFLUENCE.2014.6949321
Parthasarathy, G., & Tomar, D. C. (2015). A Survey of Sentiment Analysis for Journal Citation. Indian Journal of Science and Technology, 8(35).
      https://doi.org/10.17485/ijst/2015/v8i35/55134
Pavel, A. P. (2015). Global university rankings- a comparative analysis. Procedia economics and finance, 26, 54-63. https://doi.org/10.1016/S2212-5671(15)00838-2
Pavlov, V., & Pohrebniuk, M. (2020). Evaluation Framework of University based on Excellence Framework System. Asia-Pacific Journal of Educational Management Research, 5(1), 57-70. https://gvpress.com/journals/AJEMR/vol5_no1/6.pdf
Pengmin, W., Ting, C., & Xiaomei, W. (2018). The correlation between altmetrics and citations. Data Analysis and Knowledge Discovery, 2(6), 58-69.
Permatasari, H. P., Harlena, S., Erlangga, D., & Chandra, R. (2014). Effect of social media on website popularity: Differences between public and private universities in Indonesia. arXiv preprint arXiv,1403.1956. https://doi.org/10.48550/arXiv.1403.1956
Porzionato, M., & De Marco, F. (2015). Excellence and diversification of higher education institutions’ missions. The European Higher Education Area: Between Critical Reflections and Future Policies, 285-292. https://doi.org/10.1007/978-3-319-20877-0_19
Rekhter, N. (2012). Using social network sites for higher education marketing and recruitment. International Journal of Technology and Educational Marketing (IJTEM)2(1), 26-40. http://dx.doi.org/10.4018/ijtem.2012010103
Resch, C. (2022). The influence of social interactions on innovative endeavors in online communities. Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
Robinson-Garcia, N., Arroyo-Machado, W., & Torres-Salinas, D. (2019). Mapping social media attention in Microbiology: identifying main topics and actors. FEMS microbiology letters366(7), fnz075. https://doi.org/10.1093/femsle/fnz075
Roshani, S., Bagherylooieh, M. R., Mosleh, M., & Coccia, M. (2021). What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics, 126(9), 7859-7874. https://doi.org/10.1007/s11192-021-04077-9
Sandlin, J. K., & Peña, E. V. (2014). Building authenticity in social media tools to recruit postsecondary students. Innovative Higher Education39(4), 333-346.  
Sarwar, R., Zia, A., Nawaz, R., Fayoumi, A., Aljohani, N. R., & Hassan, S. U. (2021). Webometrics: evolution of social media presence of universities. Scientometrics126(2), 951-967. https://doi.org/10.1007/s11192-020-03804-y
Sayed, O. H. (2019). Critical treatise on university ranking systems. Open Journal of Social Sciences7(12), 39-51. https://doi.org/10.4236/jss.2019.712004
Selten, F., Neylon, C., Huang, C.-K., & Groth, P. (2020). A longitudinal analysis of university rankings. Quantitative Science Studies1(3), 1109-1135.
Shehatta, I., Al-Rubaish, A. M., & Mahmood, K. (2020). Ranking Web of universities: is Webometrics a reliable academic ranking? Pakistan Journal of Information Management and Libraries22, 103-135. https://doi.org/10.47657/2631
Shehatta. I., & Mahmood, K. (2016). Correlation among top 100 universities in the major six global rankings: policy implications. Scientometrics, 109(2), 1231-1254.  
Shin, J. C., Toutkoushian, R. K., & Teichler, U. (2011). University rankings: Theoretical basis, methodology and impacts on global higher education (Vol. 3). London: springer Science.1-55. https://doi.org/10.1007/978-94-007-1116-7
Shuai, X., Pepe, A., & Bollen, J. (2012). How the scientific community reacts to newly submitted preprints: Article downloads, Twitter mentions, and citations.  PlOS One7(11), p e47523. https://doi.org/10.1371/journal.pone.0047523
Sotudeh, H., Ravaie, M., MirzaBeigi, M., & Mazarei, Z. (2017). Altmetrics challenges in research evaluation: a thematic analysis. Health Information Management, 14(3), 124-129. https://him.mui.ac.ir/article_11582.html [In Persian].
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology61(12), 2544-2558. https://doi.org/10.1002/asi.21416
Thelwall, M., & Kousha, K. (2015). ResearchGate: Disseminating, communicating, and measuring Scholarship? Journal of the Association for Information Science and Technology, 66(5), 876–889. https://doi.org/10.1002/asi.23236
Thelwall, M., & Kousha, K. (2021). Researchers’ attitudes towards the h-index on Twitter 2007–2020: criticism and acceptance. Scientometrics126(6), 5361-5368.  
Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services. PlOS One8(5), p. e64841.
Usher, A., & Savino, M. (2006). A World of Difference: A Global Survey of University League Tables. Canadian Education Report Series. Online Submission.
Valerio-Ureña, G., Herrera-Murillo, D., & Madero-Gómez, S. (2020). Analysis of the presence of most best-ranked universities on social networking sites. In Informatics, 7(1), p. 9.
van Raan, A. F. J. (2005). Fatal attraction: Conceptual and methodological problems in the ranking of universities by bibliometric methods. Scientometrics, 62(1), 133-143.
Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391. https://doi.org/10.1016/j.joi.2016.02.007
Waltman, L., Calero-Medina, C., Kosten, J., Noyons, E. C. M., Tijssen, R. J. W., Van Eck, N. J., Van Leeuwen, T. N., Van Raan, A. F. J., Visser, M. S., & Wouters, P. (2012). The Leiden Ranking 2011/2012: Data collection, indicators, and interpretation. Journal of the American society for information science and technology63(12), 2419-2432.
Wasike, B. (2019). Citations gone# social: Examining the effect of altmetrics on citations and readership in communication research. Social Science Computer Review, 39(3), 416-433. https://doi.org/10.1177/0894439319873563
Wiechetek, Ł., & Pastuszak, Z. (2022). Academic social networks metrics: an effective indicator for university performance? Scientometrics127(3), 1381-1401.  
Wut, T. M., Xu, J. & Lee, S. W. (2022). Does university ranking matter? Choosing a university in the digital era. Education Sciences12(4), 229. https://doi.org/10.3390/educsci12040229
Yan, W., & Zhang, Y. (2018). Research universities on the ResearchGate social networking site: An examination of institutional differences, research activity level, and social networks formed. Journal of Informetrics12(1), 385-400. https://doi.org/10.1016/j.joi.2017.08.002   
Ye, Y. E., & Na, J. C. (2020). Profiling Bot Accounts Mentioning COVID-19 Publications on Twitter [Conference presentation]. In Digital Libraries at Times of Massive Societal Transition: 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020, Kyoto, Japan, November 30–December 1, 2020, Proceedings 22 (pp. 297-306). Springer International Publishing. https://doi.org/10.1007/978-3-030-64452-9_27
Yeo, R. K. (2009). Service quality ideals in a competitive tertiary environment. International journal of educational research, 48(1), 62-76. https://doi.org/10.1016/j.ijer.2009.03.004
Yu, H. (2017). Context of altmetrics data matters: an investigation of count type and user category. Scientometrics111(1), 267-283. https://doi.org/10.1007/s11192-017-2251-z
Zahedi, Z., Costas, R., & Wouters, P. (2014). How well-developed are altmetrics? A cross-disciplinary analysis of the presence of ‘alternative metrics’ in scientific publications. Scientometrics101(2), 1491-1513.  https://doi.org/10.1007/s11192-014-1264-0
Zaidieh, A. J. Y. (2012). The use of social networking in education: Challenges and opportunities. World of Computer Science and Information Technology Journal (WCSIT)2(1), 18-21. https://www.semanticscholar.org/paper/The-Use-of-Social-Networking-in-Education-%3A-and-Zaidieh/76e21d0c5cc14238463a09eec33d5d06573a32d2
Zhang, X., Wang, X., Zhao, H., Ordóñez de Pablos, P., Sun, Y., & Xiong, H. (2019). An effectiveness analysis of altmetrics indices for different levels of artificial intelligence publications. Scientometrics, 119(3), 1311-1344. https://doi.org/10.1007/s11192-019-03088-x