کشف روندهای فعلی و شناسایی مسیرهای پژوهشی آینده در علوم اعصاب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه علم اطلاعات و دانش شناسی، دانشگاه رازی، کرمانشاه، ایران.

2 دانشیار گروه علم اطلاعات و دانش شناسی، دانشگاه پیام نور، تهران، ایران.

3 دانشیار گروه روان‌شناسی، دانشگاه رازی، کرمانشاه، ایران.

10.22070/rsci.2025.20132.1788

چکیده

هدف: هدف این پژوهش، شناسایی ساختار مفهومی پژوهش‌های مرتبط با علوم اعصاب در پایگاه کلاریویت آنلیتیکس و کشف زیر حوزه‌ها و ابعاد مهم مفهوم علوم اعصاب است.
روش‌شناسی: این پژوهش با استفاده از فنون کتابسنجی و تحلیل هم‌رخدادی واژگان انجام شد. تعداد 19701 مدرک در بازه زمانی (2024- 1985)، از پایگاه کلاریویت آنلیتیکس استخراج گردید تا روند پژوهش‌های مربوط به علوم اعصاب را شناسایی کند. از تحلیل خوشه‌ای و نمودار راهبردی برای ترسیم ساختار مفهومی پژوهش‌های حوزه علوم اعصاب استفاده ‌گردید. داده‌ها با استفاده از نرم‌افزارهای تخصصی بیب اکسل، وس ویور و یوسی‌آی‌نت پردازش شدند.
یافته‌ها: تحلیل داده‌های پژوهش نشان داد که مفاهیم Neuroscience، Alzheimer disease و Neuropathology دارای بالاترین فراوانی هستند. یافته‌های حاصل از تحلیل خوشه‌ای نشان داد که مفاهیم این حوزه از شش خوشه به شرح زیر تشکیل شده‌اند: خوشه‌های ناقل عصبی (عصب رسانا) (1)، اختلالات عصب شناختی (2)، عصب شناسی شناختی (3)، اتصالات عصبی (4)، بازاریابی عصبی (5) و درد و اختلالات عصبی رشدی (6). یافته‌های پژوهش همچنین نشان داد که خوشه اتصالات عصبی جزو حوزه‌های نوظهور پژوهش‌های علوم اعصاب به شمار می‌رود.
نتیجه‌گیری: این مطالعه نشان ‌داد، علوم اعصاب به ‌عنوان حوزه پویا و بین‌رشته‌ای، قابلیت بالایی برای توسعه پژوهش‌های آینده در حوزه‌های مختلف دارد. نتایج پژوهش همچنین نشان داد که خوشه‌های اختلالات عصب‌شناختی (2) و عصب‌شناسی شناختی (3) به‌عنوان موضوعات محوری در حوزه علوم اعصاب مطرح هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Discovering current trends and identifying future research directions in neuroscience.

نویسندگان [English]

  • صالح رحیمی 1
  • Faramarz Soheili 2
  • Kamran Yazdanbakhsh 3
1 Department of Knowledge and Information Science, Faculty of Social Sciences, Razi University, Kermanshah, Iran.
2 Associate Professor, Department of Knowledge and Information Science. Payame Noor University, Tehran, Iran.
3 Department of Psychology, Razi University, Kermanshah, Iran
چکیده [English]

Purpose
Neuroscience, a field characterized by its vastness and thematic diversity, requires systematic efforts to map its conceptual structure and analyze evolving research trends. A lack of clarity in these areas risks misallocating resources and perpetuating redundant studies. This study addresses this gap by employing bibliometric methods to identify neuroscience's conceptual architecture, pinpoint emerging sub-domains, and evaluate critical dimensions within the Clarivate Analytics database. The primary objectives include delineating the intellectual landscape of neuroscience research and highlighting its interdisciplinary potential to guide future scientific inquiry.

Methodology
This applied research integrates co-word and network analysis to examine four decades of neuroscience literature (1985–2024). Data were extracted from Clarivate Analytics on February 24, 2025, using a targeted search strategy with MeSH descriptors in title fields, including terms such as:
TI=(Neurosciences) OR TI=(Cognitive Neuroscience) OR TI=(Neuroanatomy) OR TI=(Neurobiology) OR TI=(Neurochemistry) OR TI=(Neuroendocrinology) OR TI=(Neuropathology) OR TI=(Neuropharmacology) OR TI=(Neurophysiology)
The search yielded 19,701 documents containing 69,740 author keywords, which were standardized to 27,529 unique terms after deduplication and normalization. Analytical tools like VOSviewer, UCINET, and BibExcel were employed for data processing. A symmetric matrix was generated in BibExcel, transformed into a correlation matrix, and filtered using a threshold of 38 to produce a 188×188 matrix (diagonal values set to zero). Cluster analysis via the K-means method in VOSviewer visualized the co-occurrence network, while UCINET supported network metrics.

Findings
Findings revealed a general growth trend in neuroscience publications, though a decline was observed in recent years. Keyword analysis identified neuroscience, Alzheimer's disease, and neuropathology as the most frequent terms, with neuroscience serving as the field's conceptual anchor. Cluster analysis uncovered six thematic groups: Neurotransmitter (1), Cognitive disorders (2), Cognitive neuroscience (3), Neural connections (4), Neuromarketing (5), and Pain and neurodevelopmental disorders (6). Among these, Cognitive Disorders (2) demonstrated the highest centrality, reflecting their broad interdisciplinary influence and connectivity within the research network, while Pain and Neurodevelopmental disorders (6) exhibited the highest density, showing strong intra-cluster cohesion. Strategic diagram analysis positioned Cognitive disorders (2) and Cognitive neuroscience (3) as dominant, cohesive themes occupying the network's core because of their extensive linkages and centrality. In contrast, Neuromarketing (5) and Pain and neurodevelopmental disorders (6) occupied peripheral positions, representing specialized but less influential niches. Neural Connections (4) emerged as a rapidly evolving subfield, whereas Neurotransmitter (1) resided in the fourth quadrant, signaling the untapped potential for future development despite its current underrepresentation.

Conclusion
The study concludes that neuroscience's dynamism lies in its interdisciplinary nature, with a significant capacity to drive innovation across medicine, education, marketing, and spatial design. The centrality of cognitive disorders and cognitive neuroscience underscores their foundational role, combining high cohesion, cross-disciplinary influence, and conceptual interconnectedness. These clusters dominate the research network and exhibit robust internal synergy, enabling them to address complex questions such as neurodegenerative disease mechanisms and cognitive processing models. Meanwhile, emerging areas like neural connections and Neuromarketing highlight the field's expansion into novel territories facilitated by advanced machine learning and neuroimaging methodologies. The increasing adoption of hybrid analytical tools—particularly in these clusters—reflects a broader shift toward integrating computational and experimental paradigms in neuroscience research.
The results highlight how neuroscience connects traditional subjects with new and exciting uses. For instance, its intersection with medicine advances diagnostic tools for conditions like Alzheimer's, while collaborations with marketing explore consumer behavior through neuromarketing frameworks. Similarly, linkages with spatial design and education illustrate its potential to optimize learning environments and urban planning through neuroscientific insights. However, the study identifies gaps in underdeveloped areas, such as neurotransmitter research, which remains underrepresented despite its foundational relevance and warrants targeted investment to unlock its transformative potential. Strategic diagram analysis reinforces the importance of modern, data-driven approaches in parsing neuroscience's complexity. The convergence of diverse methodologies—bibliometric mapping to network analysis—enables researchers to navigate the sprawling literature and identify high-affected trajectories. This integrative approach mitigates redundancy and fosters innovation by highlighting underserved niches, such as neurodevelopmental disorders, and emerging frontiers, such as neural connectivity.
This study maps neuroscience's conceptual evolution, illustrating its dual focus on established domains and nascent innovations. Delineating influence, cohesion, and growth clusters provide a roadmap for prioritizing research efforts, fostering interdisciplinary collaboration, and leveraging advanced tools to address pressing scientific and societal challenges. The findings affirm neuroscience's role as a catalyst for cross-sector breakthroughs, from healthcare to technology, while calling for sustained investment in its core pillars and emerging frontiers.

کلیدواژه‌ها [English]

  • Neuroscience
  • Cognitive disorders
  • co-words analysis
  • conceptual structure