گذار از امنیت اطلاعات به هوش مصنوعی: تحلیل روندهای پژوهشی در امنیت سایبری صنعت بانکداری با رویکرد علم‌سنجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی گروه علم اطلاعات و دانش شناسی و مشاور علم سنجی معاونت پژوهشی دانشگاه تهران

2 مهندس کامپیوتر، متخصص امنیت داده و اسپلانک شرکت زیرساخت امن خدمات تراکنشی- بانک ملت

10.22070/rsci.2025.20186.1790

چکیده

هدف: افزایش جرائم سایبری در سال‌های اخیر وافزایش هزینه ناشی از خسارت‌های وارده در این حوزه موجب شده است که مدیران، سیاستگذارن و دولتمردان بیش از پیش امنیت سایبری را مورد توجه قرار دهند با این وجود درصد کمی از متخصصان دید جامعی نسبت به موضوع‌های مهم این حوزه دارند. این پژوهش با هدف شناسایی موضوع‌های محرک، تخصصی، ضروری و پایه حوزه امنیت سایبری و نیز شناسایی ترندها موضوعی در سال‌های مختلف انجام شده است. همچنین شناسایی موضوع‌های نوظهور و سیر روند تاریخی ظهور و افول موضوع‌ها در دوره‌های زمانی مختلف از جمله اهداف پژوهش است.
روش شناسی: رویکرد مطالعه علم‌سنجی است و از روش تحلیل هم‌رخدادی، تحلیل شبکه اجتماعی و شاخص‌های مرکزیت و چگالی استفاده شده است. جامعه آماری پژوهش کلیه مقاله‌های منتشر شده (2720مورد) در حوزه امنیت سایبری در پایگاه وب آو ساینس از سال 2004 تا 2024 بوده است. به منظور تحلیل هم‌واژگانی و تشکیل خوشه‌ها، فهرست لغات یک‍پارچه و بازدارنده ساخته شد. به منظور تحلیل داده‌ها از نرم‌افزار وس ویوور و افزونه تحت وب بیبلیوشاینی استفاده شد.
یافته‌ها: شبکه هم‌رخدادی واژگان نشان داد که موضوع مدیریت ریسک و یادگیری ماشین بیشترین رخداد را در پژوهش‌ها به خود اختصاص داده‌اند و دارای بیشترین قدرت ارتباطی با سایر موضوع‌ها هستند. موضوع‌های کلاهبرداری، مدل‌های داده‌ای، یادگیری یکپارچه و تحول دیجیتال از جمله مهمترین ترندهای موضوعی سال 2024 بوده است. خوشه یادگیری ماشین دارای بیشترین مرکزیت و تراکم است.
نتیجه گیری: تحلیل منطقی سیر تحولات پژوهشی در حوزه امنیت سایبری در بانکها طی دو دهه گذشته حاکی از گذار مفهومی از موضوع‌های سنتی نظیر "ریسک سرمایه" و "امنیت اطلاعات" به مفاهیم نوینی نظیر "یادگیری ماشین"، "یادگیری یکپارچه" و "کشف هوشمند کلاهبرداری" است و بازیگران اصلی صحنه، فناوری‌های نوظهوری مانند "یادگیری یکپارچه"، "هوش مصنوعی" و "فناوری مالی" هستند که نقشی کلیدی در بازتعریف الگوهای امنیتی ایفا می‌کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

From Information Security to Artificial Intelligence: A Scientometrics Analysis of Research Trends in Cybersecurity within the Banking Industry

نویسندگان [English]

  • Sepideh Fahimifar 1
  • Amirhossein Momenzadeh 2
1 PhD, Information science and Knowledge studies,Faculty of Management, University of Tehran
2 Computer Science Engineering, Data Security and Splunk Expert in SITS Company- Mellat Bank
چکیده [English]

Purpose: Today, cybersecurity and confidentiality in cyberspace are more important than ever. This is especially critical in financial environments such as banks, due to the presence of individuals’ confidential information and their financial accounts. Therefore, cybersecurity has emerged as one of the key thematic trends, and information security-related jobs are considered among the most important professions of the future. Consequently, policymakers, managers, and banking specialists—given the sensitivity of the data stored in their environments—need to stay informed about the latest research in this field. However, due to the vast number of studies published annually in this area, it is not feasible for experts to review all of them. In this regard, scientometric and bibliometric approaches, indicators, and tools assist specialists in identifying the most important thematic areas of cybersecurity within the banking sector. Therefore, this study aims to explore the co-occurrence network, thematic evolution, trend topics, and thematic map using the authors' keywords.
Methodology: The study adopts a scientometric approach and employs methods such as co-word analysis, as well as centrality and density indicators for clustering. The research population comprises scientific outputs in cybersecurity indexed in the Web of Science database, with no time limitations. To conduct co-word analysis and form clusters, a thesaurus of terms and a list of stop terms were created. Additionally, the Walktrap algorithm was used to generate thematic maps of clusters. The software tools utilized for this study included the Biblioshiny package and VOSviewer.
Findings: From 2004 to 2024, the number of publications in this field has grown exponentially. Since 2020, the number of articles has increased from 259 to 438 in 2024, indicating the growing importance of security in the digital banking environment. The results of the co-occurrence keyword network showed that the keywords risk management (456 occurrences), machine learning (113 occurrences), credit risk (117 occurrences), and fraud detection (104 occurrences) had the highest frequency. These were followed by banking, fintech, bank, G21, deep learning, and fraud. The thematic map visualization revealed that topics such as machine learning, deep learning, fintech, artificial intelligence, cybersecurity, data models, fraud detection, and credit card have been prominent in recent years. In 2024, trending topics included fraud, data models, federated learning, and digital transformation. In 2023, the trending topics were machine learning, fintech, credit card fraud, and blockchain. In 2022, fraud detection, cybersecurity, Islamic banking, deep learning, and artificial intelligence were among the most frequently addressed subjects. In 2021, research peaked around topics such as bank, credit risk, corporate governance, systemic risk, and information security. Finally, in 2020, the most attention was given to topics such as risk, operational risk, capital, banking regulations, and credit scoring.
The machine learning cluster is positioned in the motor quadrant, indicating it is a driving theme. The fintech cluster falls into the basic quadrant, representing a fundamental theme. The maximum financial loss cluster is located in the emerging or declining quadrant, while the risk cluster is situated in the niche quadrant, indicating a specialized area.
To examine the historical trend of topics, four time periods were selected based on the publication dates of the articles. The first period (2004–2008) focused on topics such as deposit insurance, information security, data mining, risk, model risk, credit scoring, and capital. The second period (2009–2013) included themes such as fraud detection, credit risk, risk hedging, operational risk, credit risk management, risk, authentication, deposit insurance, financial crisis, financial risk management, cyber-attack, systemic risk, pervasive banking, and financial stability. The third period (2014–2018) addressed subjects like liquidity risk, operational risk, fraud detection, authentication, risk, financial crisis, information security, cybersecurity, and phishing. Finally, the fourth period (2019–2024) highlighted key topics such as credit risk, fintech, machine learning, and risk.
Conclusion: A logical analysis of the evolution of research in the field of cybersecurity in banks over the past two decades reveals a significant conceptual shift—from traditional topics such as financial risk and information security toward more advanced themes like machine learning, federated learning, and intelligent fraud detection. Emerging technologies such as federated learning, artificial intelligence, and financial technology have become key players, playing a central role in redefining security paradigms in the banking environment. Findings derived from co-word analysis, topic trends, and conceptual clustering indicate that traditional topics are no longer represented as independent clusters. Instead, they have either merged with newer themes to form interdisciplinary clusters or have lost prominence in comparison to emerging research frontiers. These transformations highlight a broader shift in cybersecurity research in the banking sector—from a linear, centralized perspective to a more complex, networked, and technology-driven approach.

کلیدواژه‌ها [English]

  • Cybersecurity
  • Banking
  • Scientometrics
  • Biblioshiny
  • VOSviewer
  • Thematic Analysis