گذار از امنیت اطلاعات به هوش مصنوعی: تحلیل روندهای پژوهشی در امنیت سایبری صنعت بانکداری با رویکرد علم‌سنجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه علم اطلاعات و مدیریت دانش، دانشکده مدیریت دولتی و علوم سازمانی، دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران

2 مهندس رایانه، متخصص امنیت داده و اسپلانک شرکت زیرساخت امن خدمات تراکنشی- بانک ملت

چکیده

هدف: افزایش جرائم سایبری در سال‌های اخیر و افزایش هزینه‌های ناشی از خسارت‌های وارده در این حوزه موجب شده است که مدیران، سیاست‌گذاران و دولتمردان بیش‌ازپیش به امنیت سایبری  توجه نشان دهند. بااین‌‌حال، درصد کمی از متخصصان دید جامعی نسبت به موضوع‌های مهم این حوزه دارند. این پژوهش باهدف شناسایی موضوع‌های محرک، تخصصی، ضروری و پایه‌ای حوزه امنیت سایبری و همچنین بررسی روندهای موضوعی در سال‌های مختلف انجام‌شده است. علاوه بر این، شناسایی موضوع‌های نوظهور و روند تاریخی ظهور و افول موضوع‌ها در دوره‌های زمانی مختلف از دیگر اهداف این پژوهش است.
روش‌شناسی: رویکرد مطالعه، علم‌سنجی است و از روش تحلیل هم‌رخدادی، تحلیل شبکه‌های اجتماعی و شاخص‌های مرکزیت و چگالی استفاده‌شده است. جامعة آماری پژوهش، کلیة مقاله‌های منتشرشده (تعداد 2720 مقاله) در حوزة امنیت سایبری در پایگاه وب‌آو‌ساینس از سال 2004 تا 2024 است. به‌منظور تحلیل هم‌واژگانی و تشکیل خوشه‌ها، فهرست لغات یکپارچه و بازدارنده ساخته شد و برای تحلیل داده‌ها از نرم‌افزار ووس ویور و افزونة تحت وب بیبلیوشاینی استفاده گردید.
یافته‌ها: شبکه هم‌رخدادی واژه‌ها نشان داد که موضوع‌های مدیریت ریسک و یادگیری ماشین بیشترین رخداد را در پژوهش‌ها به خود اختصاص داده‌اند و دارای بیشترین قدرت ارتباطی با سایر موضوع‌ها هستند. موضوع‌های کلاهبرداری، مدل‌های داده‌ای، یادگیری یکپارچه و تحول دیجیتال ازجمله مهم‌ترین موضوع‌های سال 2024 بوده است. خوشة یادگیری ماشین دارای بیشترین مرکزیت و تراکم است.
نتیجه‌گیری: تحلیل منطقی روند تحولات پژوهشی در حوزه امنیت سایبری در بانک­ها طی دو دهه گذشته حاکی از گذار مفهومی از موضوع‌های سنتی همچون «ریسک سرمایه» و «امنیت اطلاعات» به سمت مفاهیم نوینی مانند «یادگیری ماشین»، «یادگیری یکپارچه» و «کشف هوشمند کلاهبرداری» است. بازیگران اصلی در این حوزه فناوری‌های نوظهور مانند «یادگیری یکپارچه»، «هوش مصنوعی» و «فناوری مالی» هستند که نقشی کلیدی در بازتعریف الگوهای امنیتی ایفا می‌کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

From Information Security to Artificial Intelligence: A Scientometrics Analysis of Research Trends in Cybersecurity within the Banking Industry

نویسندگان [English]

  • Sepideh Fahimifar 1
  • Amirhossein Momenzadeh 2
1 Associate Professor, Department of Information Science and Knowledge Management, Faculty of Public Administration and or-ganizational Science, College of Management, University of Tehran, Tehran, Iran
2 Computer Science Engineering, Data Security and Splunk Expert in SITS Company- Mellat Bank
چکیده [English]

Purpose: Today, cybersecurity and confidentiality in cyberspace are more important than ever. This is especially critical in financial environments such as banks, due to the presence of individuals’ confidential information and their financial accounts. Therefore, cybersecurity has emerged as one of the key thematic trends, and information security-related jobs are considered among the most important professions of the future. Consequently, policymakers, managers, and banking specialists—given the sensitivity of the data stored in their environments—need to stay informed about the latest research in this field. However, due to the vast number of studies published annually in this area, it is not feasible for experts to review all of them. In this regard, scientometric and bibliometric approaches, indicators, and tools assist specialists in identifying the most important thematic areas of cybersecurity within the banking sector. Therefore, this study aims to explore the co-occurrence network, thematic evolution, trend topics, and thematic map using the authors' keywords.
Methodology: The study adopts a scientometric approach and employs methods such as co-word analysis, as well as centrality and density indicators for clustering. The research population comprises scientific outputs in cybersecurity indexed in the Web of Science database, with no time limitations. To conduct co-word analysis and form clusters, a thesaurus of terms and a list of stop terms were created. Additionally, the Walktrap algorithm was used to generate thematic maps of clusters. The software tools utilized for this study included the Biblioshiny package and VOSviewer.
Findings: From 2004 to 2024, the number of publications in this field has grown exponentially. Since 2020, the number of articles has increased from 259 to 438 in 2024, indicating the growing importance of security in the digital banking environment. The results of the co-occurrence keyword network showed that the keywords risk management (456 occurrences), machine learning (113 occurrences), credit risk (117 occurrences), and fraud detection (104 occurrences) had the highest frequency. These were followed by banking, fintech, bank, G21, deep learning, and fraud. The thematic map visualization revealed that topics such as machine learning, deep learning, fintech, artificial intelligence, cybersecurity, data models, fraud detection, and credit card have been prominent in recent years. In 2024, trending topics included fraud, data models, federated learning, and digital transformation. In 2023, the trending topics were machine learning, fintech, credit card fraud, and blockchain. In 2022, fraud detection, cybersecurity, Islamic banking, deep learning, and artificial intelligence were among the most frequently addressed subjects. In 2021, research peaked around topics such as bank, credit risk, corporate governance, systemic risk, and information security. Finally, in 2020, the most attention was given to topics such as risk, operational risk, capital, banking regulations, and credit scoring.s
The machine learning cluster is positioned in the motor quadrant, indicating it is a driving theme. The fintech cluster falls into the basic quadrant, representing a fundamental theme. The maximum financial loss cluster is located in the emerging or declining quadrant, while the risk cluster is situated in the niche quadrant, indicating a specialized area.
To examine the historical trend of topics, four time periods were selected based on the publication dates of the articles. The first period (2004–2008) focused on topics such as deposit insurance, information security, data mining, risk, model risk, credit scoring, and capital. The second period (2009–2013) included themes such as fraud detection, credit risk, risk hedging, operational risk, credit risk management, risk, authentication, deposit insurance, financial crisis, financial risk management, cyber-attack, systemic risk, pervasive banking, and financial stability. The third period (2014–2018) addressed subjects like liquidity risk, operational risk, fraud detection, authentication, risk, financial crisis, information security, cybersecurity, and phishing. Finally, the fourth period (2019–2024) highlighted key topics such as credit risk, fintech, machine learning, and risk.
Conclusion: A logical analysis of the evolution of research in the field of cybersecurity in banks over the past two decades reveals a significant conceptual shift—from traditional topics such as financial risk and information security toward more advanced themes like machine learning, federated learning, and intelligent fraud detection. Emerging technologies such as federated learning, artificial intelligence, and financial technology have become key players, playing a central role in redefining security paradigms in the banking environment. Findings derived from co-word analysis, topic trends, and conceptual clustering indicate that traditional topics are no longer represented as independent clusters. Instead, they have either merged with newer themes to form interdisciplinary clusters or have lost prominence in comparison to emerging research frontiers. These transformations highlight a broader shift in cybersecurity research in the banking sector—from a linear, centralized perspective to a more complex, networked, and technology-driven approach.

کلیدواژه‌ها [English]

  • Cybersecurity
  • Banking
  • Scientometrics
  • Biblioshiny
  • VOSviewer
  • Thematic analysis
آزاد سنجری، س.، و چهارسوقی، ک. (1403). نوآوری‌ها و توسعه امنیت سایبری در بانک‌های ایران: تحلیل SWOT و مقایسه فرصت‌ها [مقاله کنفرانسی]. دومین کنفرانس مهندسی و مدیریت فرایندهای سازمانی، تهران. https://civilica.com/doc/2183896
حاجیان، ح.، و زرجینی، ا. (1402). تحلیلی بر کاربردهای داده‌کاوی در صنعت بیمه بر اساس شبکه هم رخدادی واژگان‌ها و شناسایی معتبرترین مجالت با شاخص استناد به پژوهش‌های علمی با استفاده از رویکرد علم‌سنجی. پژوهشنامه بیمه، 13(1)، 71-86. https://doi.org/10.22056/ijir.2024.01.06
عسکریان کاخ، ا.، قویدل، س.، و ریاحی نیا، ن. (1402). تحلیل محتوای چهار دهه پژوهش در سیاست‌های پولی بانک مرکزی: با نگاهی به «عملیات بازار باز» (بر مبنای مدارک نمایه شده در پایگاه وب‌آوساینس در بازه زمانی ۱۹۸۱ -۲۰۲۰). مطالعات و سیاست‌های اقتصادی، 10(1)، ۲۵-۵۲.
عسگری مهر، م.، و مقصودلو، ز.(1402). مدلی برای مدیریت ریسک امنیت سایبری در تحول دیجیتال (مطالعه موردی یک بانک ایرانی) [مقاله کنفرانسی]. سیزدهمین کنفرانس ‌بین‌المللی مدیریت، تجارت جهانی، اقتصاد دارایی و علوم اجتماعی. تهران. https://civilica.com/doc/1689447
Akintoye, R., Ogunode, O., Ajayi, M., & Joshua, A. A. (2022). Cyber security and financial innovation of selected deposit money banks in Nigeria. Universal Journal of Accounting and Finance, 10(3), 643–652. https://doi.org/10.13189/ujaf.2022.100302
Aldasoro, I., Doerr, S., Gambacorta, L., Notra, S., Oliviero, T., & Whyte, D. (2024). Generative artificial intelligence and cyber security in central banking. Journal of Financial Regulation, 145, 1–19. https://www.bis.org/publ/bppdf/bispap145.htm
Alqurashi, F., & Ahmad, I. (2024). Scientometric analysis and knowledge mapping of cybersecurity. International Journal of Advanced Computer Science and Applications, 15(3), 1177–1184. https://doi.org/10.14569/IJACSA.2024.01503117
Asgari Mehr, M., & Maghsoodloo, Z. (2023). A model for cybersecurity risk management in digital transformation: a case study of an Iranian bank [Conference presentation]. The 13th International Conference on Management, World Trade, Economics, Finance and Social Sciences (pp. 1–21). https://civilica.com/doc/1689447 [In Persian].
Askarian Kakh, E., Ghavidel, S., & Riahinia, N. (2023). Four decades content analysis of research on Central Bank monetary policy: Looking at open market operations (based on the documents indexed in the Web of Science database in the Period 1981-2020). The Journal of Economic Studies and Policies, 10(1), 25–52.
https://doi.org/10.22096/esp.2023.522723.1468 [In Persian].
Azad Sanjari, S., & Chaharsooghi, S. K. (2025). Innovations and development of cyber security in Iranian banks: SWOT analysis and comparison of opportunities [Conference presentation]. 2nd Conference on Organizational Process Engineering and Management (pp. 1–8). https://civilica.com/doc/2183896 [In Persian].
Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235. https://doi.org/10.1177/053901883022002003
Cele, N. N., & Kwenda, S. (2024). Do cybersecurity threats and risks have an impact on the adoption of digital banking? A systematic literature review. Journal of Financial Crime, 32(1), 31–48. https://doi.org/10.1108/jfc-10-2023-0263
Chang, H.-C. (2016). The synergy of scientometric analysis and knowledge mapping with topic models: modelling the development trajectories of information security and cyber-security research. Journal of Information & Knowledge Management, 15(4), 1650044.
https://doi.org/10.1142/S0219649216500441
Cybersecurity Ventures. (2025). Global Cybercrime Damage Cost Predictions, 2025 To 2031. Retrieved August 26, 2025, from
Deora, R. S., & Chudasama, D. M. (2021). Brief Study of Cybercrime on an Internet. Journal of Communication Engineering & Systems, 11(1), 1–6.
https://computerjournals.stmjournals.in/index.php/JoCES/article/view/812
Dhawan, S. M., Gupta, B. M., & Elango, B. (2021). Global cyber security research output (1998–2019): A scientometric analysis. Science and Technology Libraries, 40(2), 172–189. https://doi.org/10.1080/0194262X.2020.1840487
Duffy, B. M., & Duffy, V. G. (2020). Data mining methodology in support of a systematic review of human aspects of cybersecurity. In V. Duffy (ed.), Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Communication, Organization and Work. HCII 2020. Lecture Notes in Computer Science  (Vol. 12199, pp. 242–253). Springer. https://doi.org/10.1007/978-3-030-49907-5_17
Elango, B., Matilda, S., Martina Jose Mary, M., & Arul Pugazhendhi, M. (2023). Mapping the cybersecurity research: A scientometric analysis of Indian publications. Journal of Computer Information Systems, 63(2), 293–309.
https://doi.org/10.1080/08874417.2022.2058644
Hajiyan, H., & Zarjini, A. (2023). A comprehensive analysis of keywords co-occurrence network and the most cited journals on data mining techniques in insurance industry using scientometrics approach. Iranian Journal of Insurance Research, 13(1), 71–86.
https://doi.org/10.22056/ijir.2024.01.06 [In Persian].
Khasseh, A. A., Soheili, F., Sharif Moghaddam, H., & Mousavi Chelak, A. (2017). Intellectual structure of knowledge in iMetrics: A co-word analysis. Information Processing & Management, 53(3), 705–720. https://doi.org/10.1016/j.ipm.2017.02.001
Kuzior, A., Brożek, P., Kuzmenko, O., Yarovenko, H., & Vasilyeva, T. (2022). Countering cybercrime risks in financial institutions: Forecasting information trends. Journal of Risk and Financial Management, 15(12), 613. https://doi.org/10.3390/jrfm15120613
Lee, W. H. (2008). How to identify emerging research fields using scientometrics: An example in the field of information security. Scientometrics, 76, 503–525.
https://doi.org/10.1007/s11192-007-1898-2
Loan, F. A., Bisma, B., & Nahida, N. (2022). Global research productivity in cybersecurity: a scientometric study. Global Knowledge, Memory and Communication, 71(4-5), 342–354. https://doi.org/10.1108/GKMC-09-2020-0148
Martín-Martín, A., Orduna-Malea, E., Ayllón, J. M., & Lopez-Cozar, E. D. (2016). The Counting House, Measuring those Who Count: Presence of Bibliometrics, Scientometrics, Informetrics, Webometrics and Altmetrics in the Google Scholar citations, ResearcherID, ResearchGate, Mendeley & Twitter [Preprint]. Retrieved November  20, 2024, from:
http://dx.doi.org/10.13140/RG.2.1.4814.4402/1
Matilde-Espino, Y., & Valencia-Pérez, L.-R. (2022). Bibliometric analysis of scientific production about Mexico regarding cybersecurity issues (2015-2020). Ciencia Ergo Sum, 29(3), e177. https://www.scielo.org.mx/pdf/cies/v29n3/2395-8782-CES-29-03-177.pdf
Nesakumar, A. D., Arthi, S., Lahari, A., Geetha, M., Pavithra, K. N., & Mugilan, P. (2022, November). Smart ATM card for multiple bank accounts [Conference presentatiion]. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC) (pp. 1228–1232). IEEE. https://doi.org/10.1109/IIHC55949.2022.10060834
Olijnyk, N. V. (2015). A quantitative examination of the intellectual profile and evolution of information security from 1965 to 2015. Scientometrics, 105(2), 883–904.
https://doi.org/10.1007/s11192-015-1708-1
Omote, K., Inoue, Y., Terada, Y., Shichijo, N., & Shirai, T. (2024). A scientometrics analysis of cybersecurity using e-csti. IEEE Access, 12, 40350–40367.
https://doi.org/10.1109/ACCESS.2024.3375910
Orosco-Fabian, J. R. (2024). Cybersecurity in higher education: a bibliometric review. Revista Digital de Investigación En Docencia Universitaria, 18(2), e1933.
https://doi.org/10.19083/ridu.2024.1933
Petrosyan, A. (2025). Estimated cost of cybercrime worldwide 2018-2029. Statista. Retrieved November 20, 2024, from https://www.statista.com/forecasts/1280009/cost-cybercrime-worldwide
Phaal, R., O’Sullivan, E., Routley, M., Ford, S., & Probert, D. (2011). A framework for mapping industrial emergence. Technological Forecasting and Social Change, 78(2), 217–230. https://doi.org/10.1016/j.techfore.2010.06.018
Pourmadadkar, M., Lezzi, M., & Corallo, A. (2024). Cyber security for cyber-physical systems in critical infrastructures: bibliometrics analysis and future directions. IEEE Transactions on Engineering Management, 71, 15405–15421.
https://ieeexplore.ieee.org/document/10740034
Raghuram, S., Tuertscher, P., & Garud, R. (2010). Research note—mapping the field of virtual work: A cocitation analysis. Information Systems Research, 21(4), 983–999.
https://doi.org/10.1287/isre.1080.0227
Rai, S., Singh, K., & Varma, A. K. (2019). Global research trend on cyber security: A scientometric analysis. Library Philosophy and Practice, 3339, 1–6.
https://digitalcommons.unl.edu/libphilprac/3769/
Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., & Xu, M. (2020). A Survey on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE Access, 8, 222310–222354. https://doi.org/10.1109/ACCESS.2020.3041951
Shevchuk, R., & Martsenyuk, V. (2024). Neural Networks Toward Cybersecurity: Domaine Map Analysis of State-of-the-Art Challenges. IEEE Access, 12, 81265–81280.
https://doi.org/10.1109/ACCESS.2024.3411632
Solms, B. V., & Solms, R. V. (2018). Cybersecurity and information security – what goes where? Information and Computer Security, 26(1), 2–9.
https://doi.org/10.1108/ICS-04-2017-0025
Van Raan, A. F. J. (2014). Advances in bibliometric analysis: research performance assessment and science mapping. In W. Blockmans, L. Engwall, & D. Weaire, Bibliometrics Use and Abuse in the Review of Research Performance (pp. 17–28). Portland publishers.
https://scholarlypublications.universiteitleiden.nl/handle/1887/31991
Voce, I., & Morgan, A. (2023). Cybercrime in Australia 2023. Statistical Report, (43). Australian Institute of Criminology. https://doi.org/10.52922/sr77031
Wanying, Z., Jin, M., & Kun, L. (2018). Ranking themes on co-word networks: Exploring the relationships among different metrics. Information Processing and Management, 54(2), 203–218. https://doi.org/10.1016/j.ipm.2017.11.005
Xu, H., Winnink, J., Yue, Z., Zhang, H., & Pang, H. (2021). Multidimensional scientometric indicators for the detection of emerging research topics. Technological Forecasting and Social Change, 163(120490). https://doi.org/10.1016/j.techfore.2020.120490
Zhang, S. (2024). A visualized bibliometric analysis of artificial intelligence based on biblioshiny (2014-2023). Scientific Journal of Technology, 6(7), 141–151.
https://doi.org/10.54691/j4ddc779