مطالعه‌ی اثرات راهبردهای هم‌تألیفی بر بهره‌وری علمی پژوهشگران حوزه آموزش از دور: کاربست روش تحلیل شبکه‌های اجتماعی و پارادایم سرمایه اجتماعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم تربیتی، دانشگاه پیام نور، تهران، ایران

2 دانشیارگروه علوم تربیتی، دانشگاه پیام نور، تهران، ایران.

3 دانشیارگروه علم اطلاعات و دانش شناسی، دانشگاه پیام نور، تهران، ایران.

4 استادیار گروه علوم تربیتی، دانشگاه پیام نور، تهران، ایران.

چکیده

هدف: با توجه به اهمیت پژوهش‌های میان‌رشته‌ای در خلق علم، این پژوهش با هدف تحلیل ساختار شبکۀ اجتماعی هم‌تألیفی پژوهشگران حوزه آموزش از دور و سنجش تأثیر راهبردهای هم‌تألیفی (ایزوله، دوتایی، مستقل، حفره‌های ساختاری، منسجم، میانه و پیچیده) بر بهره‌وری علمی آنان انجام شده است.
روش‌شناسی: پژوهش حاضر از نوع مطالعات کاربردی علم‌سنجی است که به‌منظور تحلیل شبکۀ هم‌تألیفی از روش تحلیل شبکه‌های اجتماعی استفاده می‌کند. جامعه آماری پژوهش، تولیدات علمی تمامی پژوهشگرانی هستند که از آنها دست‌کم یک مقاله در پایگاه استنادی وب‌ آو ساینس در بازه زمانی 1990 تا 2017 نمایه شده است. پس از تهیه ماتریس متقارن هم‌تألیفی پژوهشگران، به‌منظور بازیابی نتایج از دو دسته نرم‌افزارهای الف) تحلیل شبکه‌های اجتماعی (بایب اکسل و یوسی آی‌ نت) و ب) نرم‌افزارهای تحلیل‌های آماری استفاده شده است.
یافته‌ها: نتایج نشان دادند که بین محدودیت، کارآمدی، اندازه شبکه و جنسیت با بهره‌وری علمی پژوهشگران رابطه معناداری وجود دارد. در ارتباط با تأثیر راهبردهای هم‌تألیفی بر بهره‌وری علمی پژوهشگران نتایج حاکی از آن است که راهبردهای مختلف تأثیر متفاوتی بر میزان بهره‌وری پژوهشگران این حوزه علمی دارند و بین نوع راهبردهای هم‌تألیفی و بهره‌وری علمی رابطه مستقیمی وجود دارد. در این‌باره، پژوهشگرانی که راهبردهای حفره‌های ساختاری و منسجم را به‌عنوان سبک انتشاراتی خود برگزیده‌اند، به‌ترتیب بالاترین میزان بهره‌وری را دارند. نتایج حاصل از تحلیل رگرسیون چندگانه نیز نشان داد که حدود 53 درصد از تغییرپذیری متغیر ملاک (بهره‌وری پژوهشگران) از طریق مجموع متغیرهای پیش‌بین (محدودیت، کارآمدی، اندازه شبکه و جنسیت پژوهشگران) تبیین می‌شود.
نتیجه‌گیری: نتایج مبیّن آن است که بهره‌وری علمی پژوهشگران تابعی از کاربست راهبردهای هم‌تألیفی توسط آنان است. همچنین جنسیت عامل بسیار تأثیرگذاری بر بهره‌وری علمی پژوهشگران در شبکه اجتماعی هم‌تألیفی می‌باشد 

کلیدواژه‌ها


عنوان مقاله [English]

Study of the Effects of Co-Authorship Strategies on Scientific Productivity of Researchers in Distance Education: Application of social network analysis method and social capital paradigm

نویسندگان [English]

  • Akbar Bashkoh 1
  • Mahmood Ekrami 2
  • Faramarz Soheili 3
  • Ahmad Karimi 4
1 Assistant Professor, Department of Education, Payame Noor University.
2 Associate Professor, Department of Education, Payame Noor University.
3 Associate professor, Department of library and information science. Payame Noor University.
4 Assistant Professor, Department of Education, Payame Noor University.
چکیده [English]

Purpose:Due to the importance of the interdisciplinary investigations in the creation of knowledge, this research aims to analyze the structure of co-authored social network of researchers in the field of distance education and assess the impact of co-authored strategies (Isolate, Dyadic, Cohesion, Structural Holes, Independent, Complex and Middle)have been done on their scientific productivity.
Methodology: The present study is an applied study of scientometrics using social network analysis technique (SNA) to analyze the co-authorship network. The statistical population of the study is the scientific productions of all researchers, of which at least one article has been indexed in the Web of Science citations (ISI)  in the field of distance education database from 1992 to 2017. After preparation the researcher's co-authorship matrix (AU), in order to extract the results, two types of software have been used: (a) Social Network Analysis Software (UCINET & Bibexcel), and (b) Statistical Analysis Software (SPSS).
Findings: The results show that there is a significant relationship between constraint, efficiency, network size and gender of researchers with researchers’ scientific productivity. Concerning the effect of the co-authorship strategies on the scientific productivity of researchers, the results indicate that different strategies have a different effect on the productivity of researchers in this field and between type of co-authorship strategies and scientific productivity there is a direct relationship. In this regard, researchers who have chosen structural holes and cohesion strategies as their publishing style have the highest levels of productivity, respectively. The results of regression analysis also showed that about 53% of the variability of criterion variable (productivity of researchers) is explained through the sum of predictive variables (constraint, efficiency, network size and gender of researchers).
Conclusion: The results indicate that scientific productivity of researchers is a function of their application of co-authorship strategies. Also, gender of researchers is a very important factor in researcher's scientific productivity in the co-authorship social network.

کلیدواژه‌ها [English]

  • Co-Authorship
  • Co-Authorship Strategies
  • Social Network Analysis (SNA)
  • Scientific Productivity
  • Social Capital
ارشدی، هما؛ عرفان‌منش، محمدامین و سالمی، نجمه. (1396). تحلیل و ترسیم شبکه‌های هم‌نویسیندگی پژوهشگران دانشگاه شهید بهشتی در حوزه‌های علوم اجتماعی، انسانی و هنر. پژوهشنامه علم‌سنجی، 3 (1): 57-64.
رجب‌زاده، سمیه. (1397). ساختار دانش در حوزه آموزش از راه دور، رساله دکتری، گروه علوم تربیتی، دانشکده علوم تربیتی و روانشناسی، دانشگاه پیام نور مرکز تهران.
زندی‌روان، نرگس؛ داورپناه، محمدرضا و فتاحی، رحمت‌الله. (1395). مروری بر نقشه علم و روش‌شناسی آن، پژوهش‌نامه علم‌سنجی، 2 (1)3: 57-76.
سهیلی، فرامرز، عصاره، فریده، فرج‌پهلو، عبدالحسین. (1392). تحلیل ساختار شبکه‌های اجتماعی هم‌نویسندگی پژوهشگران علم اطلاعات، پژوهشنامه پردازش و مدیریت اطلاعات، 29(1): 191-210.
سهیلی، فرامرز؛ موسوی چلک، افشین، خاصه، علی‌اکبر. (1394). تأثیرگذارترین پژوهشگران حوزه آی‌متریکس، تحقیقات کتابداری و اطلاع‌رسانی دانشگاهی، 49(1): 23-54.
محمدیان، سجاد و وزیری، اسماعیل. (1396). تحلیل و مصورسازی شبکه هم‌تألیفی دانشگاه‌های علوم پزشکی وابسته به وزارت بهداشت با استفاده از سنجه‌های تحلیل شبکه اجتماعی بر اساس داده‌های وب آو ساینس، مجله دانشکده پیراپزشکی علوم پزشکی تهران (پیاورد سلامت)، 11 (1)، 43-56.
موسوی‌ چلک، افشین؛ سهیلی، فرامرز و خاصه، علی‌اکبر. (1396). رابطۀ بین نفوذ اجتماعی و بهره‌وری و کارایی در شبکه اجتماعی هم‌نویسندگی پژوهشگران علوم قرآن و حدیث ایران. فصلنامه کتابداری و اطلاع‌رسانی، 20 (3): 50-74.
نوچه‌ناسار، حمیدرضا؛ شمس مورکانی، غلامرضا و قانعی‌راد، محمدامین. (1396). تحلیل شبکه اجتماعی هم‌نویسندگی مقالات خارجی اعضای هیئت علمی رشته علوم تربیتی، پژوهشنامه علم‌سنجی، زیر چاپ.
نوروزی چاکلی، عبدالرضا و رضایی، مینا .(1393). شناسایی و اعتبارسنجی شاخص‌های ارزیابی بهره‌وری پژوهشی پژوهشگران ایران، پردازشومدیریتاطلاعات، 30 (1): 3-39. 
Besancenot, D., Huynh, K., & Serranito, F. (2017).  Co-authorship and research productivity in economics: Assessing the assortative matching hypothesis, Journal of Economic Modelling, article in press.
Borgatti, S.P., Everett, M.G. & Freeman, L.C. (2002). UCINET for windows: Software for social network analysis. Harvard, MA: Analytic Technologies.
Bozeman, B., & Lee, S. (2003). The impact of research collaboration on scientific productivity. Paper prepared for presentation at the Annual Meeting of the American Association for the Advancement of Science, Denver, Colorado February.
Brandão, M. A., & Moro, M. M. (2017). The strength of co-authorship ties through different topological properties, Journal of the Brazilian Computer Society, 23:5-18.
Burt, R. S. (1992). Structural Holes: The Social Structure of Competition. Massachusetts: Harvard University Press.
Christine, E. Forte. (2017). Seeking social capital and expertise in a newly-formed research community: A Co-Author Analysis, A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Education in Learning Technologies, Pepperdine University, Graduate School of Education and Psychology.
Colman, J. S. (1988). Social Capital in the Creation of Human Capital, the American journal of Sociology, (94), 95-120.
Cygler, J. (2015). Structural pathology in inter-organizational networks and the decision-making autonomy of its members. In Management of Network Organizations; Sroka, W., Hittmár, Š., Eds.; Springer International Publishing: Cham, Switzerland, 95, 181–195.
Duque, R.B., Ynvalez, M., Sooryamoorthy. P.M., Dzorbgo, D.S., & Shrim, W. (2005). Collaboration paradox: Scientific productivity, the Internet, and problems of research in developing areas. Social Studies of Science, 35(5), 755-785.
Freire V.P., & Figueiredo D.R. (2011). Ranking in collaboration networks using a group based metric. J Braz Comput Soc, 41:255–266.
Fagan, F.. Katherine S.. Eddens., Dolly, J., Nathan L., Vanderford., Heidi Weiss., & Justin S. Levens. (2018). Assessing Research Collaboration through Co-authorship Network Analysis, Journal of Research Administration, 49 (1): 76-99.
Khasseh, A. A., Soheili, F. & Mousavi, C. A. (2017). "Co-authorship Network Analysis of iMetrics Researchers", Library Philosophy and Practice (e-journal). 1496.
Kumar, S. (2015). Co-authorship networks: a review of the literature. Aslib Journal of Information Management, 67 (1), 55-73.
Kuzhabekova, A. (2011). Impact of Co-Authorship Strategies on Research Productivity: a Social-Network Analysis on Publication in RUSSIAN Cardiology, A Dissertation Submitted to the faculty of the Graduate School of the University of Minnesota.
Luna, JEO., Revoredo, K., & Cozman, F.G. (2013). Link prediction using a probabilistic description logic. J Braz Comput Soc,19(108): 15-30.
Madaan, G., & Jolad, SH. (2014). Evolution of Scientific Collaboration Networks, IEEE International Conference on Big Data, pp 7-13.
McKether,W.L., & Friese, S. (2015). Qualitative social network analysis with ATLAS. Ti Increasing Power In A Black Community. In Proceedings of the ATLAS.ti User Conference 2015, Berlin, Germany, 29–31 August.
Newman, M. E. J. (2004). “Co-authorship networks and patterns of scientific collaboration”, PNAS, 101 (Suppl_1), 5200–05.
Parreira, M.R., Machado, K.B., Logares, R., Diniz-Filho, J.A.F., & Nabout, J.C. (2017). The roles of geographic distance and socioeconomic factors on international collaboration ecologists. Scientometrics, 113, 1539–1550.
Popp, J., Balogh, p., Oláh, j.,I Kot, s., Rákos, m. H., & Lengyel, P. (2018). Social Network Analysis of Scientific Articles Published by Food Policy, Sustainability, 10(577): 1-22.
Qi, X., Fuller, E., Wu, Q., Wu, Y., & Zhang, C.Q. (2012). Laplacian centrality: A new centrality measure for weighted networks. Inf. Sci, 194, 240–253.
Ransdell, L. B. (2001). Using the PRECEDE-PROCEED model to increase productivity in health education faculty. The International Electronic Journal of Health Education, 4, 276-282.
Reingewertz, Y., & Lutmar, C. (2018). Academic in-group bias: An empirical examination of the link between author and journal affiliation. J. Informetr, 12, 74–86.
Rumsey-Wairepo, A. (2006). The association between co-authorship network structures and successful academic publishing among higher education scholars. Brigham Young University. (PhD Dissertation), Brigham Young University, USA. (169).
Sadatmoosavi, A., Nooshinfard, F., & Hariri, N. (2018). “Does the superior position of countries in co-authorship networks lead to their high citation performance in the field of nuclear science and technology?” Malaysian Journal of Library and Infor­mation Science, 23 (1), 51-65.
Soheili, F., Khademi, R., & Mansoori, A. (2015). Correlation between Impact Factor & productivity with Centrality measures in journals of Information science: A social network analysis”, International journal of Information and management. 13(1): 21-38.  
Tajedini, O., Ghazizade, A., & Sadatmoosavi, A. (2018). Identifying the Effects of Co-authorship Strategies on the Citation-based Performance of Scholars: A Social Networks Analysis, Journal of Scientometric Res, 7(1):19-28.
Vanderelst, D. (2015). Social Network Analysis As a Tool for Research Policy. PLoS Negl Trop Dis, 9(12): e0004266.
Van Noorden, R. (2010). Metrics: A profusion of measures. Nature, 465: 864–866.
Vieira, E.S., & Gomes, J.A. (2010). Citations to scientific articles: Its distribution and dependence on the article features. J. Informetr, 4(1): 1–13.
Vinkler, Péter. (2010). The Evaluation of Research by Scientometrics Indicators. Oxford: Chandos Publishing.
Whitley, B. E., Kite, M.E., & Adams, H. L. (2014). Principles of Research in Behavioral Science; Routledge: New York, NY, USA; London, UK, 2013, ISBN 10 0415879280.
Zawacki-Richter, O., & von Prümmer, C. (2010). Gender and collaboration patterns in distance education research. Open Learning: The Journal of Open, Distance and e-Learning, 25(2), 95-114.